一、连续时间信号和离散时间信号
1、举例与数学表示
(1)信号可以描述范围极为广泛的一类物理现象。在数学上,信号可以表示为一个或多个变量的函数,例如一个语音信号可以表示为声压随时间变化的函数,一张黑白照片可以用亮度随二维空间变化的函数来表示,为了方便起见,以后在讨论中一般总是用时间来表示自变量。
(2)信号可以分为确知信号与随机信号,其中确知信号可以表示成一个或几个自变量的函数,它是作为信号分析的基础。
(3)在往后的讨论中将考虑两种基本类型的信号——连续时间信号和离散时间信号。
①连续时间信号用t表示连续时间变量,用圆括号“( )”把自变量括在里面。
②离散时间信号用n表示离散时间变量,用方括号“[ ]”把自变量括在里面。值得注意的是,离散时间信号仅仅在自变量(时间)的整数值上有定义。
(4)有些离散时间信号是通过对连续时间信号的采样而得到的(如上两图所示的信号),这时该离散时间信号则代表一个连续变化的连续时间信号在相继的离散时刻点上的样本值。
2、信号能量与功率
(1)在某些应用中,所考虑的信号是直接与在某一物理系统中具有功率和能量的一些物理量有关的,针对这类信号,它们有功率和能量的概念,下面给出的计算公式只是说信号值和能量或功率存在那样的关系,公式的计算结果可能具有错误的量纲或大小(如下图所示,可以把下面的信号视作某一电阻上的电压信号,很显然,公式的计算结果需要除以电阻值才能得到实际的值)。
(2)一段时间内信号的总能量:
(3)在无穷区间内信号的总能量:
(4)在无穷区间内信号的平均功率:
(5)利用以上定义可以区分三种重要的信号:
二、自变量的变换
1、概述
(1)由于信号可视为自变量的函数,当自变量改变时,必然会使信号的特性相应地发生改变。
(2)本节仅关注很有限但很重要的几种最基本的信号变换——时移、时间反转和时间尺度变换,这些变换只涉及自变量的简单变换,也就是时间轴的变换。
2、三种基本信号变换举例
(1)时移:
(2)时间反转:(一般都以坐标轴为反转轴)
(3)时间尺度变换:(一般都以坐标轴为中心轴)
3、信号变换步骤
(1)以连续时间信号为例,对一个已知的信号,通过自变量变换可求得一个形式如的信号,这个信号除了有一个线性的扩展或压缩、时间上的反转及移位以外,仍旧保持着的形状。
(2)一般来说,信号变换为的步骤是“时移→时间反转→时间尺度变换”(不一定每步都需要),信号变换为的步骤则相反。
(3)举例:
4、周期信号
(1)一个周期连续时间信号具有这样的性质,即存在一个正值T,对所有的t来说,都有,换句话说,当一个连续时间信号时移T后其值不变,就说明它是一个周期信号,周期为T,否则是一个非周期信号。
(2)一个周期离散时间信号具有这样的性质,即存在一个正值N,对所有的n来说,都有,换句话说,当一个离散时间信号时移N后其值不变,就说明它是一个周期信号,周期为N,否则是一个非周期信号。
(3)使式子成立的最小正值T称为的基波周期,除非为常数,不然基波周期的定义都成立;使式子立的最小正值N称为基波周期,即使为常数,它也可视作周期信号,其基波周期。
5、偶信号与奇信号
(1)如果一个信号或以原点为轴反转后不变,则称其为偶信号,在连续时间情况下有,在离散时间情况下有;如果一个信号或以中心轴为轴反转后不变,则称其为奇信号,在连续时间情况下有(),在离散时间情况下有()。
(2)任何信号都能分解为两个信号之和,其中之一为偶信号,另一个为奇信号,以连续时间信号为例,其偶部为,奇部为。
三、指数信号与正弦信号
1、连续时间复指数信号与正弦信号
(1)连续时间复指数信号的形式为,其中C和a一般为复数。
(2)如果C和a都是实数,这时就称为实指数信号。
①如果a是正实数,那么随t的增加而呈指数增长。
②如果a是负实数,那么随t的增加而呈指数衰减。
③如果,那么就为常数C。
(3)如果a是纯虚数,特别考虑信号(或),这时是周期信号,其基波周期(称为基波频率)。
(4)与周期复指数信号密切相关的一种信号是正弦信号,利用欧拉关系,复指数信号可以用与其相同基波周期的正弦信号来表示,而正弦信号也能用与其相同基波周期的复指数信号来表示。
(5)一组成谐波关系的复指数信号,它们不仅全部是周期信号,而且还有一个公共周期,经过推导,可以得出一个成谐波关系的复指数信号的集合就是一组基波频率是某一正频率的整数倍的周期复指数信号,即,对于任何的情况,是周期的,其基波频率为,基波周期为。
(6)考虑一般复指数信号,将C用极坐标表示,将a用笛卡尔坐标表示,分别有和,那么,利用欧拉关系,可得出。
2、离散时间复指数信号与正弦信号
(1)离散时间复指数信号的形式为,其中C和α一般为复数,若令,则有另一种表示形式。
(2)如果C和α都是实数,这时就称为实指数信号。
(3)如果β是纯虚数,即,特别考虑信号(或),这时是周期信号,其基波周期(称为基波频率)。
(4)与周期复指数信号密切相关的一种信号是正弦信号,利用欧拉关系,复指数信号可以用与其相同基波周期的正弦信号来表示,而正弦信号也能用与其相同基波周期的复指数信号来表示。
(5)考虑一般复指数信号,将C和α用极坐标表示,分别有和,那么利用欧拉关系,可得。
(6)为了使信号是周期的,周期为,那必须有,这就等效于要求,则必须有一个整数m满足或者,这一结论对离散时间正弦信号也是成立的。
四、单位冲击函数与单位阶跃函数
1、离散时间单位脉冲序列和单位阶跃序列
(1)离散时间单位脉冲又称为单位样本,定义为
(2)离散时间单位阶跃定义为
(3)离散时间单位脉冲是离散时间单位阶跃的一次差分,即;单位样本的求和函数就是离散时间单位阶跃,即。
2、连续时间单位阶跃函数和单位冲激函数
(1)连续时间单位阶跃函数在时刻是不连续的,定义为
(2)连续时间单位冲击函数可看成连续时间单位阶跃函数的一次微分,即,不过在时刻是不连续的,为此可将其看成信号的一种近似,这里从0升到1是在一个较短的时间间隔内完成的,是当时的极限,无论如何,脉冲的面积都为1,而没有持续期,故用箭头指出脉冲的面积集中在时刻。
五、连续时间系统和离散时间系统
1、概述
(1)一个连续时间系统是这样的系统,输入该系统的信号是连续信号,系统产生的输出也是连续信号,系统的输入-输出关系可以表示为“”。
(2)一个离散时间系统是这样的系统,输入该系统的信号是离散信号,系统产生的输出也是离散信号,系统的输入-输出关系可以表示为“”。
2、简单系统举例
3、系统的互联
(1)很多系统都可以当初几个子系统互联构成的,最常见的基本互联形式是串联(级联)和并联(多种形式可以同时混合存在)。
(2)下图所示的是两个系统的级联,系统1的输出就是系统2的输入,整个系统变换输入信号首先由系统1处理,然后再由系统2处理。(以此类推可得到多个系统的级联)
(3)下图所示的是两个系统的并联,系统1和系统2具有相同的输入,两个系统并联后的输出时系统1和系统2的输出之和。(并联比起级联稍复杂些,除了信号相加以外,有时还有信号相乘的情况)
(4)反馈互联是系统互联的另外一种重要类型,下图是一个简单的例子,系统1的输出是系统2的输入,而系统2的输入又反馈回来与外加的输入信号一起组成系统1的真正输入。
六、基本系统性质
1、有记忆系统和无记忆系统
(1)如果对自变量的每一个值,一个系统的输出仅仅取决于该时刻的输入,这个系统就称为无记忆系统。
(2)如果对自变量的每一个值,一个系统的输出会取决于过去或将来时刻的输入,这个系统就称为有记忆系统。
2、可逆性与可逆系统
(1)一个系统如果在不同输入下可以导致不同的输出,则该系统是可逆的,相应地,对应该系统会有一个逆系统存在,当该逆系统与原系统级联后,就会出现第二个系统的输出等于第一个系统的输入的情况。
(2)可逆系统的逆系统没有固定的求法,求解逆系统需依赖数学运算。
3、因果性
如果一个系统在任何时刻的输出只取决于现在的输入及过去的输入,该系统就称为因果系统。
4、稳定性
一个稳定系统,如果其输入是有界的(即输入的幅度不是无界增长的),则系统的输出也必须是有界的,尽管扩大输入范围,输出也会被限制,比如滑动摩擦力的大小就不会随其相对作用力的增长而无限增长。(下图中的不稳定系统是一个累加器,它会将从时刻开始每一时刻的输入信号值累加并输出之)
5、时不变性
(1)如果在输入信号上有一个时移,而在输出信号中产生同样的时移,那么这个系统就是时不变的。
(2)比如是一个离散时间时不变系统在输入为时的输出,那么当输入为时,输出就为。
(3)比如是一个离散时间时不变系统在输入为时的输出,那么当输入为时,输出就为。
(4)系统可能是时变的情形:
①如果系统中的运算采用了当前时刻值,那么该系统很有可能是时变系统。
②如果系统的输入信号的自变量经过时间尺度变换或者时间反转,那么该系统很有可能是时变系统。
(5)系统是否时变的判断步骤:
①对输入信号做时移,用时移后的输入信号求出相应的输出信号。
②对原本的输出信号做相同的时移,和上一步求出的输出信号做比较,如果相同,说明系统是时不变的,否则是时变的。
6、线性
(1)线性系统具有叠加性质,如果某一个输入是由几个信号的加权和组成的,那么输出也就是系统对这组信号中每一个的响应的加权和。
(2)系统是否线性的判断步骤:
①假设两个任意输入,分别求出它们对应的输出。
②将两个输入线性组合,作为第三个输入,求出对应的输出。
③将两个任意输入对应的输出线性组合,与上一步求出的输出做比较,如果相同,系统是线性的,否则是非线性的。
(3)在连续时间和离散时间系统中大量存在一类系统,系统的总输出由一个线性系统的响应和一个零输入响应叠加组成,这样的系统属于增量线性系统,即在连续或离散时间系统中,其响应对输入中的变化是线性的(不过其本身不在线性系统的范畴中)。