R语言生存分析(机器学习)(1)——GBM(梯度提升机)

本文介绍了GBM(GradientBoostingMachines)算法,如何使用Cox回归在肺部数据集上训练模型,通过Boosting技术和迭代过程优化预测。文章还展示了模型评估,包括ROC曲线和C-index计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预测误差。

#1 清空
rm(list = ls())
gc()
#2 导入包
library("survival")
library("gbm")
help(package="gbm")
#3 拆分训练集和测试集
data<-lung
set.seed(123)
train <- sample(1:nrow(data), round(nrow(data) * 0.70))
train <- data[train, ]
test <- data[-train, ]
#4 建立模型
set.seed(123)
gbm_model <- gbm(Surv(time, status) ~ .,#建模
             distribution = "coxph",#分布
             data = train,#数据
             n.trees = 5000,#树数量
             shrinkage = 0.1,#学习率或步长减少
             interaction.depth = 5,#每棵树的最大深度
             n.minobsinnode = 10,#最小观测次数在树的终末节点
             cv.folds = 10#交叉验证次数
)
plot(gbm_model)#通过“积分”其他变量,绘制所选变量的边际效应。
summary(gbm_model)#绘图,从高到低显示因素的相对重要性

 

#5 预测
best.iter <- gbm.perf(gbm_model, plot.it = TRUE, method = "cv")
pred_train <- predict(gbm_model, train, n.trees = best.iter)
pred_test <- predict(gbm_model, test, n.trees = best.iter)
#6 模型评价
#计算ROC
library(survivalROC)
roc_area <- survivalROC(Stime=train$time,
                        status=train$status,
                        marker =pred_train,
                        predict.time=100,
                        method="KM")
# 计算C-index
Hmisc::rcorr.cens(-pred_train, Surv(train$time, train$status))
Hmisc::rcorr.cens(-pred_test, Surv(test$time, test$status))
#7 计算生存概率
# 计算累积
CH<- basehaz.gbm(train$time, train$status, pred_train, 
                   t.eval = 300, cumulative = TRUE)
exp(-exp(pred_test)*CH)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值