GWAS数据下载详解(2)

1、FinnGen数据库:Risteys FinnGen R11 + FinRegistryhttps://risteys.finregistry.fi/

以检索"glaucoma"(青光眼)为例:https://risteys.finregistry.fi/

 

 

 下载数据:

 链接:https://storage.googleapis.com/finngen-public-data-r9/summary_stats/finngen_R11_H7_GLAUCOMA.gz

 特点:R11代表数据库,H7_GLAUCOMA是endpoint name,其他数据可以替换后下载。

使用R语言整理数据:

字段含义:Data description - FinnGen DocumentationFile naming pattern and file structurehttps://finngen.gitbook.io/documentation/data-description#summary-association-statistics

"#chrom" :染色体;"pos"位置;"ref"对照等位基因;"alt":效应等位基因;"rsids":变量标识符;"nearest_genes":最近基因; "pval" p值;"mlogp" -log10P;"beta":效应大小;sebeta效应大小标准差;"af_alt":效应等位基因频率;"af_alt_cases":病例中的效应等位基因频率;"af_alt_controls":对照组中效应等位基因频率。

用TwoSampleMR整理出暴露数据和结局数据。

#读取下载内容
setwd("D:\\")#查看R语言当前工作路径,将txt文件放置给文件夹
library('data.table')
a <- fread("finngen_R9_O15_PRE_OR_ECLAMPSIA.gz",header = T)
save(a,file="Finngen.RData")
#获取数据变量
colnames(a)
#筛选强相关的变量:若5E-8筛选出来的变量较少,可适当调大P值(须有文献根据)
ab<-subset(a,pval<5e-8)
ab$phenotype<-"PRE_OR_ECLAMPSIA"
#load("整理.RData")
save(ab,file="整理.RData")
#整理为TwoSampleMR所需要的双样本数据
library(TwoSampleMR)
#暴露数据
exposure<-format_data(ab,
                      type = "exposure",
                      snp_col = "rsids",
                      phenotype_col = "phenotype",
                      beta_col = "beta",
                      se_col = "sebeta",
                      eaf_col="af_alt",
                      effect_allele_col = "alt",
                      other_allele_col = "ref",
                      pval_col = "pval")
#去除连锁不平衡(linkage disequilibrium)
exposure_data<-clump_data(exposure,clump_r2 = 0.001)

#结局数据
outcome<-format_data(ab,
                     snps=exposure_data$SNP,
                     type = "outcome",
                     snp_col = "rsids",
                     phenotype_col = "phenotype",
                     beta_col = "beta",
                     se_col = "sebeta",
                     eaf_col="af_alt",
                     effect_allele_col = "alt",
                     other_allele_col = "ref",
                     pval_col = "pval")

整理出数据后即可进行分析。

 

Finngen数据库是一个用于基因组学研究的在线工具和资源。以下是使用Finngen数据库的步骤: 1. 访问Finngen数据库网站。在网站主页上,您将找到各种可供选择的功能和工具。 2. 在搜索框中输入感兴趣的基因、疾病或其他相关的词语。Finngen数据库将根据您的搜索词提供相应的结果。 3. 点击搜索结果中的相应项目以获取更详细的信息。这些信息可能包括该基因或疾病的相关文献、基因变异的频率、与特定表型或临床特征的相关性等。 4. 使用Finngen的可视化工具来进一步研究和分析数据。该工具允许您探索不同基因间的关系、基因变异频率的变化趋势、基因变异与疾病相关性的热图等等。 5. 另外,您还可以使用Finngen中心提供的其他工具来进行数据挖掘和分析。这些工具包括基因表达数据的查询工具、定量基因表达和变异的关联分析工具等等。 6. 最后,您可以通过Finngen数据库下载相关数据,以便在自己的研究中使用。您可以选择下载整个数据集或特定的数据子集,以满足您的研究需求。 总结来说,使用Finngen数据库可以通过搜索和探索数据来获取与基因、疾病和表型相关的信息,并使用其提供的工具进行进一步的数据分析和挖掘。这些功能和资源可以帮助研究人员更好地理解基因组学和相关疾病的关联性,并为研究提供有价值的数据
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值