AdaBoost-股票涨跌预测模型搭建

1.引入之后需要用到的库

import tushare as ts  # 股票基本数据相关库
import numpy as np  # 科学计算相关库
import pandas as pd  # 科学计算相关库  
import talib  # 股票衍生变量数据相关库
import matplotlib.pyplot as plt  # 引入绘图相关库
from sklearn.metrics import accuracy_score  # 引入准确度评分函数
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息,警告非报错,不影响代码执行股票涨跌预测模型搭建

2.股票数据处理与衍生变量生成

# 1.股票基本数据获取
df = ts.get_k_data('000002',start='2015-01-01',end='2019-12-31')
df = df.set_index('date')  # 设置日期为索引

# 2.简单衍生变量构造
df['close-open'] = (df['close'] - df['open'])/df['open']
df['high-low'] = (df['high'] - df['low'])/df['low']

df['pre_close'] = df['close'].shift(1)  # 该列所有往下移一行形成昨日收盘价
df['price_change'] = df['close']-df['pre_close']
df['p_change'] = (df['close']-df['pre_close'])/df['pre_close']*100

# 3.移动平均线相关数据构造
df['MA5'] = df['close'].rolling(5).mean()
df['MA10'] = df['close'].rolling(10).mean()
df.dropna(inplace=True)  # 删除空值

# 4.通过Ta_lib库构造衍生变量
df['RSI'] = talib.RSI(df['close'], timeperiod=12)  # 相对强弱指标
df['MOM'] = talib.MOM(df['close'], timeperiod=5)  # 动量指标
df['EMA12'] = talib.EMA(df['close'], timeperiod=12)  # 12日指数移动平均线
df['EMA26'] = talib.EMA(df['close'], timeperiod=26)  # 26日指数移动平均线
df['MACD'], df['MACDsignal'], df['MACDhist'] = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9)  # MACD值
df.dropna(inplace=True)  # 删除空值
# 查看此时的df后五行
df.tail()

3.特征变量和目标变量提取 

X = df[['close', 'volume', 'close-open', 'MA5', 'MA10', 'high-low', 'RSI', 'MOM', 'EMA12', 'MACD', 'MACDsignal', 'MACDhist']]
y = np.where(df['price_change'].shift(-1)> 0, 1, -1)

4.训练集和测试集数据划分

X_length = X.shape[0]  # shape属性获取X的行数和列数,shape[0]即表示行数 
split = int(X_length * 0.9)

X_train, X_test = X[:split], X[split:]
y_train, y_test = y[:split], y[split:]

5.模型搭建

from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(random_state=123)
model.fit(X_train, y_train)

 6. 模型使用与评估

6.1.预测下一天的涨跌情况

y_pred = model.predict(X_test)
print(y_pred)

a = pd.DataFrame()  # 创建一个空DataFrame 
a['预测值'] = list(y_pred)
a['实际值'] = list(y_test)
a.head()

 

# 查看预测概率
y_pred_proba = model.predict_proba(X_test)
y_pred_proba[0:5]

 6.2.模型准确度评估

from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print(score)

6.3 混淆矩阵

#混淆矩阵
from sklearn.metrics import confusion_matrix
m = confusion_matrix(y_test, y_pred)  # 传入预测值和真实值
print(m)
# 计算ROC曲线需要的假警报率(fpr)、命中率(tpr)及阈值(thres)
from sklearn.metrics import roc_curve
fpr, tpr, thres = roc_curve(y_test, y_pred_proba[:,1])
# .查看假警报率(fpr)、命中率(tpr)及阈值(thres)
a = pd.DataFrame()  # 创建一个空DataFrame 
a['阈值'] = list(thres)
a['假警报率'] = list(fpr)
a['命中率'] = list(tpr)
a.head()
# .绘制ROC曲线
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文
plt.plot(fpr, tpr)  # 通过plot()函数绘制折线图
plt.title('ROC曲线')  # 添加标题,注意如果要写中文,需要在之前添加一行代码:plt.rcParams['font.sans-serif'] = ['SimHei']
plt.xlabel('FPR')  # 添加X轴标签
plt.ylabel('TPR')  # 添加Y轴标
plt.show()
# .求出模型的AUC值
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
score

 

 6.4 分析数据特征的重要性

# 通过如下代码可以更好的展示特征及其特征重要性:
features = X.columns  
importances = model.feature_importances_
a = pd.DataFrame()
a['特征'] = features
a['特征重要性'] = importances
a = a.sort_values('特征重要性', ascending=False)
a

以上仅代表个人观点,如有错误,希望多多包涵! 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: Adaboost是一种集成学习的算法,用于预测实例的分类。它通过组合多个弱分类器来构建一个强分类器,并且每个弱分类器都针对之前分类错误的实例进行更加关注和调整。 Adaboost算法的预测过程如下: 1. 初始化训练数据的权重,将每个实例的权重设为相等值。 2. 针对当前的数据权重,训练一个弱分类器。弱分类器的目标是使得错误分类的实例权重增加,并且分类结果的错误率最小。 3. 根据弱分类器的分类结果,更新每个实例的权重。分类错误的实例权重会增加,而分类正确的实例权重会减少。 4. 重复步骤2和3,训练出多个不同的弱分类器。 5. 将多个弱分类器进行加权组合,构建成一个强分类器。每个弱分类器的权重(组合权重)取决于其分类结果的准确度。 6. 最终的预测结果是通过强分类器对新实例进行分类得到的。 Adaboost算法的优势在于它能够通过组合多个弱分类器来提升整体分类准确度。它能够在训练过程中自动调整每个实例的权重,并且对分类错误的实例进行更多关注,从而提高分类性能。此外,Adaboost算法还能够处理具有不平衡类别的数据集,并且对于大规模的数据集也具有较好的扩展性。 然而,Adaboost算法也有一些限制。它对噪声和异常值比较敏感,可能导致过拟合问题。此外,Adaboost算法的训练过程是串行的,不能并行处理,因此可能导致训练时间较长。最后,对弱分类器的选择也对最终的预测结果有一定的影响,需要根据具体问题选择适合的弱分类器。 ### 回答2: Adaboost(自适应提升算法)是一种用于二分类问题的集合学习算法,通过组合多个弱分类器提升整体分类性能。该算法的预测过程如下: 1. 初始化样本权重:将每个样本的权重初始化为相等值,例如1/n,其中n为样本数量。 2. 遍历每个弱分类器: - 在当前样本权重下训练一个弱分类器。弱分类器可以是任意分类模型,如决策树桩,逻辑回归等。 - 计算弱分类器的误差率。误差率计算为被错误分类的样本的权重之和。 - 计算弱分类器的权重。弱分类器的权重由误差率决定,误差率越小的分类器权重越大。 - 更新样本权重。被正确分类的样本的权重减小,被错误分类的样本的权重增加。 3. 构建强分类器:将每个弱分类器的预测结果按权重加权,得到最终的预测结果。预测结果为正类的权重之和与负类的权重之和的比较。 Adaboost算法的特点是先训练出一个弱分类器,然后调整样本权重,该样本对于下一个弱分类器的训练起到更重要的作用。经过多轮迭代,每个弱分类器的权重会被调整得更准确,最终形成一个强分类器用于预测。 Adaboost算法预测实例的过程如下:对于给定的未知样本,使用训练好的强分类器对其进行分类。首先将该样本输入第一个弱分类器进行分类,记录分类结果并更新样本权重。然后依次将该样本输入其他弱分类器,并按照权重加权的方式得到最终的分类结果。最终的分类结果可以是二分类问题的正类或负类或者基于阈值设定的其他分类结果。 Adaboost算法通过训练多个弱分类器,使得组合后的强分类器能够更准确地对样本进行分类预测,提高了分类模型的性能。 ### 回答3: Adaboost(自适应提升算法)是一种集成学习方法,用于处理分类问题。它通过组合多个弱分类器来构建一个强分类器。具体预测实例的过程如下: 首先,初始化数据集中每个样本的权重相等,然后选择一个基本分类器来训练。基本分类器是一个简单的分类器,不需要太高的准确率,例如决策树桩(只有一个判断节点和两个叶子节点的决策树)。基本分类器将根据数据集中样本的权重对不同特征进行判断,并生成针对每个样本的分类结果。 然后,根据基本分类器的准确率调整每个样本的权重。准确率高的样本权重降低,准确率低的样本权重增加。这样,准确率高的样本在后续的训练中会受到较小的关注,而准确率低的样本会得到更多的关注,以提高整体分类准确率。 接着,通过迭代选择新的基本分类器,并根据其准确率调整样本的权重。迭代过程将继续进行,直到达到预定的迭代次数或分类误差小于预设阈值。 最后,将所有基本分类器的结果进行加权投票,根据每个分类器的权重来决定最终的分类结果。权重高的分类器结果对最终预测结果的贡献更大。 总而言之,Adaboost算法通过不断调整样本权重和组合多个弱分类器的结果,来预测实例的分类结果。这种集成学习的方法使得整体分类器的准确率得到提高,适用于多种分类问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

经济工科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值