让我们探讨矩阵经过各种变换后,其特征值将如何变化。设A是一个方阵,其特征值为λᵢ,对应的特征向量为vᵢ,满足 A v i = λ i v i Av_i = \lambda_i v_i Avi=λivi。
1. 求逆:
- 变换: A⁻¹ (假设A可逆)
- 特征值变化: 如果λᵢ是A的特征值,那么1/λᵢ是A⁻¹的特征值。特征向量保持不变。
- 证明: 因为 A v i = λ i v i Av_i = \lambda_i v_i Avi=λivi,如果A可逆,我们可以两边同时左乘A⁻¹: A − 1 A v i = A − 1 λ i v i ⇒ v i = λ i A − 1 v i ⇒ A − 1 v i = 1 λ i v i A^{-1}Av_i = A^{-1}\lambda_i v_i \Rightarrow v_i = \lambda_i A^{-1}v_i \Rightarrow A^{-1}v_i = \frac{1}{\lambda_i} v_i A−1Avi=A−1λivi⇒vi=λiA−1vi⇒A−1vi=λi1vi 这表明 1/λᵢ 是 A⁻¹ 的特征值,对应的特征向量仍然是 vᵢ。
2. 转置:
- 变换: Aᵀ
- 特征值变化: A和Aᵀ具有相同的特征值。 但是,特征向量通常不同。
- 证明: 这需要更深入的讨论,通常涉及到A的特征多项式与其转置的特征多项式相同,而特征多项式的根即为特征值。
3. 伴随矩阵:
- 变换: adj(A) (伴随矩阵)
- 特征值变化: 如果λᵢ是A的特征值 (且A可逆),则 |A|/λᵢ 是adj(A)的特征值,其中|A|表示A的行列式。 如果A不可逆,情况较为复杂。
- 证明: 这基于关系式 A − 1 = 1 ∣ A ∣ a d j ( A ) A^{-1} = \frac{1}{|A|} adj(A) A−1=∣A∣1adj(A)。 结合求逆变换的结果即可推导。
4. 次方:
- 变换: Aᵏ (k为整数)
- 特征值变化: 如果λᵢ是A的特征值,则λᵢᵏ是Aᵏ的特征值。特征向量保持不变。
- 证明: 通过数学归纳法易证。 例如, A 2 v i = A ( A v i ) = A ( λ i v i ) = λ i ( A v i ) = λ i ( λ i v i ) = λ i 2 v i A^2v_i = A(Av_i) = A(\lambda_i v_i) = \lambda_i (Av_i) = \lambda_i (\lambda_i v_i) = \lambda_i^2 v_i A2vi=A(Avi)=A(λivi)=λi(Avi)=λi(λivi)=λi2vi
5. 多项式:
- 变换: p(A),其中p(x)是多项式
- 特征值变化: 如果λᵢ是A的特征值,则p(λᵢ)是p(A)的特征值。特征向量保持不变。
- 证明: 这可以从A的特征值和特征向量的定义以及多项式的性质直接推导出来。
6. 加单位矩阵:
- 变换: A + I (I是单位矩阵)
- 特征值变化: 如果λᵢ是A的特征值,则λᵢ + 1是A + I的特征值。特征向量保持不变。
- 证明: ( A + I ) v i = A v i + I v i = λ i v i + v i = ( λ i + 1 ) v i (A+I)v_i = Av_i + Iv_i = \lambda_i v_i + v_i = (\lambda_i + 1)v_i (A+I)vi=Avi+Ivi=λivi+vi=(λi+1)vi
总结: 特征值的变化与矩阵变换的类型密切相关。 在大多数情况下,特征向量保持不变,而特征值则根据特定的变换规则进行变化。 需要注意的是,以上结论中,A的某些性质(例如可逆性)可能对结果产生影响。 对于更复杂的变换,需要根据具体情况进行分析。