我们来聊聊 姚期智的百万富翁问题 (Yao’s Millionaires’ Problem)。这是一个在密码学领域非常有代表性的问题,由中国计算机科学家姚期智(Andrew Yao)在 1982 年提出,是 安全多方计算 (Secure Multi-Party Computation, MPC) 领域的早期经典问题。
问题的背景:
假设有两个百万富翁,Alice 和 Bob。他们想知道谁更富有,但又都不想透露自己实际拥有多少钱。
问题的核心挑战:
如何在不泄露各自财产具体数值的情况下,比较出谁更富有?
为什么这是一个有趣的问题?
这个问题之所以有趣,是因为它反映了许多现实世界中隐私保护的需求。例如,两家公司想比较他们的年度利润,但都不想向对方透露具体的利润数字。或者两个组织想比较某个指标,但又不愿公开敏感数据。
姚期智的解决方案:
姚期智提出的解决方案是利用密码学技术来实现 安全多方计算。他的原始解决方案基于 混淆电路 (Garbled Circuits) 的概念。虽然混淆电路的细节比较复杂,但其核心思想是:
- 将比较函数编码成一个逻辑电路。 比如,一个电路输入两个数字,输出一个比特,表示哪个数字更大。
- 一方(比如 Alice)对这个电路进行“混淆”或加密。 混淆后的电路看起来像一堆乱码,但仍然保留了原始电路的逻辑功能。
- 另一方(比如 Bob)将自己的输入(他的财产数值)进行加密,并使用特殊的技术在混淆电路中进行计算。 这个计算过程是“盲”的,Bob在计算过程中不知道电路的具体结构,Alice也不知道Bob的输入。
- 计算的输出(比较结果)只有 Bob 能够解密。 Bob解密后就知道谁更富有,而 Alice 仍然不知道 Bob 的财产数值。
更直观的理解(非混淆电路的简化类比):
为了更容易理解,我们可以用一个简化但不太精确的类比来描述安全多方计算的思想:
想象 Alice 有一个数字 A
,Bob 有一个数字 B
。他们想比较 A
和 B
的大小。
一种安全的方法可能涉及:
- Alice 生成一个随机数
R
。 - Alice 计算
A + R
,并将结果发送给 Bob。 - Bob 计算
A + R - B
,并将结果发送回给 Alice。 - Alice 收到结果后,减去
R
,得到A - B
。 - 如果
A - B > 0
,则A > B
;如果A - B < 0
,则A < B
;如果A - B = 0
,则A = B
。
在这个过程中,Bob 知道了 A + R
和 A + R - B
,但他不知道 A
或 B
的具体值。Alice 知道了 A - B
的结果,从而得知了比较结果,但她也不知道 B
的具体值。
这种简化类比并不完全代表姚期智的原始混淆电路方案,但它能帮助理解安全多方计算的核心思想:在不泄露参与者输入的情况下,完成一个预定的计算任务。
百万富翁问题的意义:
姚期智的百万富翁问题及其解决方案具有重要的意义:
- 开创了安全多方计算领域: 它证明了在不泄露隐私的情况下进行计算是可能的,为后续安全多方计算的研究奠定了基础。
- 推动了隐私保护技术的发展: 安全多方计算是实现隐私保护计算的关键技术之一。
- 启发了许多其他安全协议的设计: 百万富翁问题的思路和技术被应用于解决各种复杂的安全计算问题。
安全多方计算的应用:
安全多方计算在许多领域都有潜在的应用,例如:
- 数据隐私保护下的联合分析: 多家机构在不共享原始数据的情况下,联合进行数据分析或机器学习。
- 隐私保护的生物识别: 在不共享生物识别模板的情况下,进行身份验证。
- 隐私保护的投票系统: 确保投票的匿名性和计票的准确性。
我们来稍微深入一点,讲讲 混淆电路 (Garbled Circuits) 是如何实现这一目标的。
混淆电路是姚期智提出解决百万富翁问题的核心技术,也是安全两方计算 (Secure Two-Party Computation) 的基础技术之一。它允许两方(Alice 和 Bob)在不泄露各自输入的情况下,共同计算一个函数。
核心思想:
混淆电路的基本思想是将一个计算函数表示为一个逻辑电路,然后对这个电路进行加密和变形,使得一方(Alice,电路的创建者)可以在不泄露电路结构的情况下将其发送给另一方(Bob,电路的执行者)。Bob 收到混淆电路后,用自己的加密输入在混淆电路上进行“盲”计算,最终得到加密的输出。只有拥有特定密钥的一方(通常是 Bob)才能解密输出,得到最终结果。
主要步骤(以 Alice 和 Bob 比较财富大小为例):
-
电路构造 (Circuit Construction):
- 首先,将比较函数(例如,比较 Alice 的财富
A
和 Bob 的财富B
,输出A > B
、A < B
或A = B
的结果)表示为一个布尔逻辑电路。这个电路由各种逻辑门(AND, OR, NOT, XOR 等)组成。 - 例如,一个简单的比较电路可以逐比特地比较两个数字。
- 首先,将比较函数(例如,比较 Alice 的财富
-
混淆 (Garbling):
- Alice(电路的创建者)对这个逻辑电路进行混淆。混淆过程的关键是为电路中的每一条“线”上的每一个可能的逻辑值(0 或 1)分配两个随机的 秘密密钥 (Secret Keys)。
- 例如,对于某条线
w
,表示逻辑值 0 的密钥是k_w^0
,表示逻辑值 1 的密钥是k_w^1
。这些密钥是 Alice 随机生成的。 - 对于电路中的每一个逻辑门(例如一个 AND 门),Alice 根据输入线的密钥和输出线的密钥构造一个 混淆表 (Garbled Table)。这个混淆表包含了四条加密的条目,对应于输入线可能的四种组合(00, 01, 10, 11)。每条条目加密了对应的输出线逻辑值所对应的秘密密钥。
- 例如,一个 AND 门有两个输入线
a
和b
,一个输出线c
。如果输入是a
的逻辑值 0 (密钥k_a^0
) 和b
的逻辑值 1 (密钥k_b^1
),AND 的输出应该是c
的逻辑值 0 (密钥k_c^0
)。在混淆表中,就会有一个条目,使用k_a^0
和k_b^1
作为加密密钥,加密k_c^0
。 - Alice 对电路中的所有逻辑门都进行混淆,生成完整的混淆表。
- Alice 会将自己的输入
A
的每一个比特对应的秘密密钥发送给 Bob。例如,如果A
的某个比特是 0,Alice 就发送这条线对应逻辑值 0 的密钥。
-
传输 (Transmission):
- Alice 将混淆后的电路(混淆表)以及关于输出线逻辑值对应的秘密密钥和最终结果的映射关系发送给 Bob。
-
输入加密和 OLE (Oblivious Transfer Extension) / OT (Oblivious Transfer):
- Bob 也需要将他的输入
B
的每一个比特对应的秘密密钥发送给 Alice。然而,Bob 不能直接发送,否则 Alice 就会知道 Bob 的输入。 - 这里需要使用 不经意传输 (Oblivious Transfer, OT) 技术。OT 是一种密码学协议,允许 Bob 从 Alice 那里选择一个项目,而 Alice 不知道 Bob 选择了哪个项目,同时 Bob 也只知道他选择的那个项目,不知道其他项目。
- 在百万富翁问题中,Bob 需要为他的输入
B
的每一个比特,从 Alice 提供的两个密钥(对应逻辑值 0 和 1 的密钥)中选择一个。通过 OT,Bob 可以安全地获取他需要的密钥,而 Alice 不知道 Bob 选择的是 0 对应的密钥还是 1 对应的密钥。更高效的实现通常使用 OLE (Oblivious Transfer Extension)。
- Bob 也需要将他的输入
-
电路执行 (Circuit Evaluation):
- Bob 收到了混淆电路、他自己输入
B
的所有比特对应的密钥、以及 Alice 输入A
的所有比特对应的密钥。 - Bob 从输入线的密钥开始,沿着电路逐个逻辑门进行计算。对于每个逻辑门,Bob 使用他拥有的输入线的两个密钥来查找混淆表中的对应条目。
- 由于混淆表是经过加密的,Bob 只能解密他拥有正确密钥的条目。如果 Bob 拥有的输入密钥组合与混淆表中的某个加密条目匹配,他就能成功解密,得到输出线的秘密密钥。
- Bob 沿着电路一直计算到输出线,最终得到输出线的秘密密钥。
- Bob 收到了混淆电路、他自己输入
-
输出解密 (Output Decryption):
- Bob 拥有输出线的秘密密钥。Alice 在混淆阶段将输出线的秘密密钥与最终的比较结果(例如
A > B
)进行了映射。 - Bob 使用他得到的输出线秘密密钥,根据 Alice 提供的映射关系,找到对应的最终结果。
- Bob 拥有输出线的秘密密钥。Alice 在混淆阶段将输出线的秘密密钥与最终的比较结果(例如
总结混淆电路的关键点:
- 秘密密钥化逻辑值: 通过将逻辑值(0 或 1)映射到随机的秘密密钥,隐藏了实际的逻辑值。
- 加密的逻辑门: 通过混淆表加密逻辑门的输出,使得只有拥有正确输入密钥的人才能解密并得到输出密钥。
- 盲计算: Bob 在不知道电路结构和实际逻辑值的情况下,通过密钥在混淆电路上进行计算。
- 不经意传输 (OT/OLE): 用于安全地传输 Bob 的输入密钥,保护 Bob 的隐私。
局限性:
混淆电路虽然是一个非常巧妙的解决方案,但也存在一些局限性:
- 计算开销: 构建和执行混淆电路,特别是对于复杂的函数,会产生显著的计算和通信开销。
- 仅限于两方: 原始的混淆电路主要用于安全两方计算。扩展到多方计算需要更复杂的协议。
尽管有这些局限性,混淆电路仍然是安全多方计算领域的重要基石,并不断有新的优化和改进方案出现,以提高其效率和适用性。