sklearn.datasets.load_iris函数

函数原型
sklearn.datasets.load_iris(*, return_X_y=False, as_frame=False)
函数说明

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性(分别是:花萼长度,花萼宽度,花瓣长度,花瓣宽度)。可通过这4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类的鸢尾花中的哪一类。
Iris里有两个属性iris.data,iris.target。data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,一共有150条记录。

参数return_X_y如果为True,则返回一个(data, target)元组类型的数据;如果为False,则返回一个类似字典的Bunch对象。as_frame如果为True,则表示返回的data、target类型为DataFrame类型;如果为False,则返回的类型为ndarray数组类型。

函数使用
>>> dataset = datasets.load_iris()
# 返回Bunch对象
>>>> type(dataset)
<class 'sklearn.utils.Bunch'>
>>> type(dataset["data"])
<class 'numpy.ndarray'>

>>> dataset = datasets.load_iris(return_X_y=True)
# 返回元组(data, target)
>>> type(dataset)
<class 'tuple'>
# data是一个ndarray数组
>>> type(dataset[0])
<class 'numpy.ndarray'>

>>> dataset = datasets.load_iris(as_frame=True)
>>> type(dataset)
<class 'sklearn.utils.Bunch'>
# data是一个DataFrame对象
>>> type(dataset["data"])
<class 'pandas.core.frame.DataFrame'>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不负韶华ღ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值