找到二叉树中的最大搜索二叉树

题目

        给定一棵二叉树的头节点 head,一致其中所有节点的值都不一样,找到含有节点最多的搜索二叉树,并返回这棵子树的头节点。

示例

分析

树形dp套路:如果题目求解目标是S规则,则求解流程可以定成以每一个节点为头节点的子树在S规则下的每一个而答案,并且最终答案一定在其中。

S规则:以本题为例,题目求解目标是:整棵二叉树中最大搜索二叉子树。求解流程可以理解为:在整颗二叉树中,求出每一个节点为头节点的子树的最大搜索二叉树,并且最终答案一定在其中。

树形dp套路步骤

第一步:

以某个节点X为头节点的子树中,分析答案有哪些可能性。

以节点X为头节点的子树中,最大的搜索二叉树只可能是以下三种情况中可能性最大的那种:

(1)X为头节点的子树中,最大搜索二叉子树就是X的左子树中最大搜索二叉子树,也就是说答案来自于左树。(本例中当X节点是12时)

(2)同上,答案来自右树。(本例中当X节点是6时)

(3)如果X左子树上的最大搜索二叉树是X左子树的全体,X右子树上的最大搜索二叉树是X右子树的全体,并且X的值大于左子树所有节点的最大值,但小于右子树所有节点的最小值,那么最大搜索二叉树就是以X为头节点的全体。(本例中当X节点是10时)

第二步:

根据第一步的可能性分析,列出所有需要的信息。

为了分析第一、二种可能性,需要分别知道左子树和右子树上的最大搜索二叉树的头部,记为 leftMaxBSTHeadrightMaxBSTHead,因为要比较大小,所以还需分别知道左子树和右子树上的最大搜索二叉子树的大小,记为 leftBSTSizerightBSTSize。如果知道了leftMaxBSTHead,并且发现他正好是X的左孩子节点,则说明X左子树上的最大搜索二叉子树时X左子树的全体。右树同理。另外还需要知道左子树的最大值 leftMax和右子树的最小值rightMin

第三步:

合并第二步的信息,对左树和右树提出同样的要求,并写出信息结构。

以本题为例,左树和右树都需要最大搜索二叉子树的头节点及大小这两个信息,但是左树只需要最大值,右树只需要最小值,那么合并变成统一要求。信息结构如下:

public class ReturnType {
    
    public Node maxBSTHead;
    public int maxBSTSize;
    public int min;
    public int max;

    public ReturnType(Node maxBSTHead, int maxBSTSize, int min, int max) {
        this.maxBSTHead = maxBSTHead;
        this.maxBSTSize = maxBSTSize;
        this.min = min;
        this.max = max;
    }
}

 第四步:

设计递归函数,递归函数时处理以X为头节点的情况下的答案,包括设计递归的 base process,默认直接得到左树和右树的所有信息,以及把可能性做整合,并且要返回第三步的信息结构这四个小步骤,如下:

    public ReturnType process(Node X) {
        //base case :如果子树为空
        //最小值为系统最大
        //最大值为系统最小
        if (X == null) {
            return new ReturnType(null,0,Integer.MAX_VALUE,Integer.MIN_VALUE);
        }
        //默认直接得到左树 右树全部信息
        ReturnType lData = process(X.left);
        ReturnType rData = process(X.right);
        //以X为头节点的子树的最小值是:以X为头节点的整个树中最小的
        int min = Math.min(X.value,Math.min(lData.min, rData.min));
        //以X为头节点的子树的最大值是:以X为头节点的整个树中最大的
        int max = Math.max(X.value,Math.max(lData.max,rData.max));
        int maxBSTSize = Math.max(lData.maxBSTSize,rData.maxBSTSize);
        Node maxBSTHead = lData.maxBSTSize >= rData.maxBSTSize ? lData.maxBSTHead : rData.maxBSTHead;
        
        if (lData.maxBSTHead == X.left && rData.maxBSTHead == X.right && X.value > lData.max && X.value < rData.min) {
            maxBSTSize = lData.maxBSTSize + rData.maxBSTSize +1;
            maxBSTHead = X;
        }
        return new ReturnType(maxBSTHead,maxBSTSize,min,max);
    }

主方法如下:

    public Node getMaBST(Node head) {
        return process(head).maxBSTHead;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小印z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值