如何将dataframe数据类型某两列合并成一列

这篇博客介绍了如何利用Python的map()函数将数据框中的'y'字段与'date'字段合并成新的'ydate'列,并进一步通过map()函数拆分出年份和日期。博主展示了map()函数的工作原理,以及在数据处理中的应用,帮助读者理解如何在DataFrame中进行数据操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.目的:将字段的“y”字段与date字段合并为一列

2.数据读取并展示

3.map()函数作用

将序列中的每一个元素,输入函数,最后将映射后的每个值返回合并,得到一个迭代器。

3.1map()函数原理图

原理解释:上图有一个列表,元素分别是从1-9。map()函数的作用就是,依次从这个列表中取出每一个元素,然后放到f(x)函数中,最终得到一个通过函数映射后的结果。

同理:

df["ydate"] =df["y"].map(str) +"-"+ df["date"].map(str)     
#取出每一个元素变成字符串类型,再对字符串进行合并,
#赋值到df的ydate字段中,如果不转换为字符串,
#y字段与date字段都是数值类型,将会进行数值相加。

合并结果:

4.再利用map函数对ydate字段进行分割

df["new_y"] = df["ydate"].map(lambda x : x.split("-")[0])   #获取年份
df["new_date"] = df["ydate"].map(lambda x : x.split("-")[1])  #获取日期

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值