【Datawhale组队学习】机器学习数学基础 - 中值定理【Task 05】

函数相关的中值定理

以下的内容均为需要保证 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内连续。

有界与最值定理

m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M,其中,m和M分别为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最大值与最小值。

人话:闭区间上的连续函数必有最值

介值定理

m ≤ μ ≤ M m \leq \mu \leq M mμM时,存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得 f ( ξ ) = μ f(\xi) = \mu f(ξ)=μ

人话:闭区间上的连续函数,能取到最值之间的任何数

平均值定理

a < x 1 < x 2 < ⋯ < x n < b a < x_1 < x_2 < \dots < x_n < b a<x1<x2<<xn<b时,在 [ x 1 , x n ] [x_1,x_n] [x1,xn]内至少存在一点 ξ \xi ξ,使得
f ( ξ ) = f ( x 1 ) + f ( x 2 ) + . . . + f ( x n ) n f(\xi) = \frac{f(x_1)+f(x_2)+...+f(x_n)}{n} f(ξ)=nf(x1)+f(x2)+...+f(xn)

利用最值定理,有限个处于最值之间的数据之和。

零点定理

f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)f(b)<0时,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0

拓展为闭区间可取到端点: f ( a ) ⋅ f ( b ) ≤ 0 f(a) \cdot f(b) \leq 0 f(a)f(b)0时,存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0

导数(微分)相关中值定理

费马定理

f ( x ) f(x) f(x)满足在 x 0 x_0 x0 { ① 可 导 , ② 取 极 值 , \begin{cases} ①可导,\\ ②取极值, \end{cases} { f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0

罗尔定理

f ( x ) f(x) f(x)满足 { ① 在 [ a , b ] 上 连 续 , ② 在 ( a , b ) 内 可 导 , ③ f ( a ) = f ( b ) , \begin{cases} ①在[a,b]上连续,\\②在(a,b)内可导,\\ ③f(a) = f(b),\end{cases} [a,b](a,b)f(a)=f(b)则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0

需要注意的是,罗尔定理中存在三个条件:

  1. ①中根据最值定理可以推出 m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M
  2. ③是为了保证a和b的端点处不同时为最大和最小值
  3. ②是为了满足费马定理

这三个条件主要是为了说明极值点在函数内部。

拉格朗日中值定理

f ( x ) f(x) f(x)满足 { ① 在 [ a , b ] 上 连 续 , ② 在 ( a , b ) 内 可 导 , \begin{cases} ①在[a,b]上连续,\\②在(a,b)内可导,\end{cases} {[a,b](a,b)则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a) = f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)
或者写成
f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi) = \frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
或者写成
f ( b ) − f ( a ) = f ′ [ a + θ ( b − a ) ] ( b − a ) , θ ∈ ( 0 , 1 ) f(b) - f(a) = f' [a+\theta(b-a)](b-a),\theta \in (0,1) f(b)f(a)=f[a+θ(ba)](ba)θ(0,1)
或者写成
f ( a + h ) − f ( a ) = f ′ ( a + θ h ) h , θ ∈ ( 0 , 1 ) f(a+h) - f(a) = f'(a+\theta h)h,\theta \in (0,1) f(a+h)f(a)=f(a+θh)hθ(0,1)

想要证明该定理的时候,需要构造辅助函数:
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) F(x) = f(x) - f(a) - \frac{f(b)-f(a)}{b-a}(x-a) F(x)=f(x)f(a)baf(b)f(a)(xa)
可以很显然的发现: F ( a ) = F ( b ) = 0 F(a) = F(b) = 0 F(a)=F(b)=0

然后再根据罗尔定理,即可得证。

柯西中值定理

f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足 { ① 在 [ a , b ] 上 连 续 , ② 在 ( a , b ) 内 可 导 , ③ g ′ ( x ) ≠ 0 , \begin{cases} ①在[a,b]上连续,\\②在(a,b)内可导,\\ ③g'(x) \neq 0,\end{cases} [a,b](a,b)g(x)=0则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) ) \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}) g(b)g(a)f(b)f(a)=g(ξ)f(ξ))

证明柯西定理的时候,也需要构造辅助函数,其形状类似:
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) g ( b ) − g ( a ) [ g ( x ) − g ( a ) ] F(x) = f(x) - f(a) - \frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)] F(x)=f(x)f(a)g(b)g(a)f(b)f(a)[g(x)g(a)]
可以很显然的发现: F ( a ) = F ( b ) = 0 F(a) = F(b) = 0 F(a)=F(b)=0

然后再根据罗尔定理,即可得证。

泰勒公式

  1. 带拉格朗日余项的n阶泰勒公式
    f ( x ) f(x) f(x) x 0 x_0 x0的某个邻域内 n + 1 n+1 n+1阶导数存在,则对该邻域内的任意点 x x x,有
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! f(x) = f(x_0) + f'(x_0)(x-x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!} f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)
    其中 ξ \xi ξ介于 x x x x 0 x_0 x0之间。

  2. 带佩亚诺余项的n阶泰勒公式
    f ( x ) f(x) f(x) x 0 x_0 x0的某个邻域内 n n n阶可导,则存在 x 0 x_0 x0的一个邻域,使得该邻域内的任意点,有
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n + o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+o((xx0)n)

x 0 = 0 x_0 = 0 x0=0时为麦克劳林公式。

积分相关的中值定理

积分中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,那么存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int^b_a{f(x)}dx = f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

相比于平均值定理而言,一个是有限的数,取平均,一个是无限个数的和取平均。


以上内容是DataWhale第28期组队学习,根据b站视频考研数学之高等数学(一二三都适用)学习整理所得,若有不足,望指出。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值