1. 二叉树的最大深度
【递归】
如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为 max(l,r) + 1
而左子树和右子树的最大深度又可以以同样的方式进行计算。
class Solution:
def maxDepth(self, root):
if root is None:
return 0
else:
left_height = self.maxDepth(root.left)
right_height = self.maxDepth(root.right)
return max(left_height, right_height) + 1
复杂度分析
时间复杂度:O(n)O(n),其中 nn 为二叉树节点的个数。每个节点在递归中只被遍历一次。
空间复杂度:O(\textit{height})O(height),其中 \textit{height}height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。
2. 对称二叉树
根据题目的描述,镜像对称,就是左右两边相等,也就是左子树和右子树是相当的。
注意这句话,左子树和右子相等,也就是说要递归的比较左子树和右子树。
我们将根节点的左子树记做 left,右子树记做 right。比较 left 是否等于 right,不等的话直接返回就可以了。
如果相当,比较 left 的左节点和 right 的右节点,再比较 left 的右节点和 right 的左节点
根据上面信息可以总结出递归函数的两个条件:
终止条件:
1.left 和 right 都为空 ,对称
2.left,right有一个为空,不对称
3.left 和 right 都不空,比较对象:
left.left 和 right.right,比较 left.right 和 right.left
不等就不对称,相等就递归下去
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
if not root: return True
def compare(left,right):
if not left and not right: return True
elif not left and right: return False
elif not right and left: return False
elif left.val != right.val: return False
return compare(left.left,right.right) and compare(left.right,right.left)
return compare(root.left,root.right)
3. 路经总和
【DFS】
首先是 DFS 解法,该解法的想法是一直向下找到叶子节点,如果到叶子节点时sum == 0,说明找到了一条符合要求的路径。
当题目中提到了叶子节点时,正确的做法一定要同时判断节点的左右子树同时为空才是叶子节点。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object