二叉树的递归思想

本文详细介绍了如何利用递归解决二叉树问题,包括计算最大深度、判断对称二叉树、路径总和及构造二叉树等。递归策略涉及后序遍历、中序遍历和前序遍历,强调递归终止条件和过程中的空间复杂度分析。
摘要由CSDN通过智能技术生成

1. 二叉树的最大深度

【递归】
如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为 max(l,r) + 1
而左子树和右子树的最大深度又可以以同样的方式进行计算。

class Solution:
    def maxDepth(self, root):
        if root is None: 
            return 0 
        else: 
            left_height = self.maxDepth(root.left) 
            right_height = self.maxDepth(root.right) 
            return max(left_height, right_height) + 1 

复杂度分析

时间复杂度:O(n)O(n),其中 nn 为二叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(\textit{height})O(height),其中 \textit{height}height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

2. 对称二叉树

根据题目的描述,镜像对称,就是左右两边相等,也就是左子树和右子树是相当的。
注意这句话,左子树和右子相等,也就是说要递归的比较左子树和右子树。
我们将根节点的左子树记做 left,右子树记做 right。比较 left 是否等于 right,不等的话直接返回就可以了。
如果相当,比较 left 的左节点和 right 的右节点,再比较 left 的右节点和 right 的左节点
根据上面信息可以总结出递归函数的两个条件:
终止条件:
1.left 和 right 都为空 ,对称
2.left,right有一个为空,不对称
3.left 和 right 都不空,比较对象:
left.left 和 right.right,比较 left.right 和 right.left
不等就不对称,相等就递归下去

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSymmetric(self, root: TreeNode) -> bool:
    	if not root: return True
        def compare(left,right):
            if not left and not right: return True
            elif not left and right: return False
            elif not right and left: return False    
            elif left.val != right.val: return False
            
            return compare(left.left,right.right) and compare(left.right,right.left)
        return compare(root.left,root.right)

3. 路经总和

【DFS】
首先是 DFS 解法,该解法的想法是一直向下找到叶子节点,如果到叶子节点时sum == 0,说明找到了一条符合要求的路径。

当题目中提到了叶子节点时,正确的做法一定要同时判断节点的左右子树同时为空才是叶子节点。

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值