优化方法 Momentum,AdaGrad,RMSProp,Adam

本文介绍了深度学习中常用的优化算法,包括Momentum、Adagrad、RMSProp和Adam。Momentum通过引入动量项改善了SGD的收敛速度。Adagrad实现了自适应学习率,但存在学习率逐渐消失的问题。RMSProp解决了Adagrad的这一问题,而Adam结合了Momentum和RMSProp的优点,成为现代深度学习的首选优化算法。
摘要由CSDN通过智能技术生成

一、 Momentum

如下图图 a 所示,当一个维度比另一个维度下降地明显更加急促时(经常是局部最优点),朴素 SGD 容易存在收敛极慢的问题。
在这里插入图片描述

momentum(动量)的引入可以直观地较好处理这个问题,其在计算当前时刻的更新向量vt 时,引入了上一次更新向量 vt-1,具体如下:
在这里插入图片描述
γ一般为0.9
在这里插入图片描述

二、Adagrad

注意是逐个元素应用,所以可以使每个参数的学习率不同
在这里插入图片描述
从上图可以看出,随着迭代的增加,我们的学习率是在逐渐变小的,这在“直观上”是正确的:
当我们越接近最优解时,函数的“坡度”会越平缓,我们也必须走的更慢来保证不会穿过最优解。

AdaGrad的效果是:
在参数空间中更为平缓的倾斜方向会取得更大的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值