推荐系统相关

本文探讨了推荐系统中多路召回策略的应用,通常包括兴趣标签、协同过滤等多种召回方式。每路召回会拉回固定数量K的物料,但过多的召回路数和超参数可能导致优化难题。如何设定合理召回数量以及实现个性化配置是当前面临的问题。尽管个性化配置可能更优,但在多路召回场景下实现并不简单。
摘要由CSDN通过智能技术生成

1.如何做多路召回
在这里插入图片描述

目前工业界的推荐系统,在召回阶段,一般都采取多路召回策略。上图展示了一个简化版本的例子,以微博信息流排序为例,不同业务召回路数不太一样,但是常用的召回策略,基本都会包含,比如兴趣标签,兴趣Topic,兴趣实体,协同过滤,热门,相同地域等,多者几十路召回,少者也有7/8路召回。
对于每一路召回,会拉回K条相关物料,这个K值是个超参,需要通过线上AB测试来确定合理的取值范围。

如果你对算法敏感的话,会发现这里有个潜在的问题:
1.如果召回路数太多,对应的超参就多,这些超参组合空间很大,如何设定合理的各路召回数量是个问题。
2.另外,如果是多路召回,这个超参往往不太可能是用户个性化的,而是对于所有用户,每一路拉回的数量都是固定的,这里明显有优化空间。

按理说,不同用户也许对于每一路内容感兴趣程度是不一样的,更感兴趣的那一路就应该多召回一些,所以如果能把这些超参改为个性化配置是很好的,但是多路召回策略下,虽然也不是不能做,但是即使做,看起来还是很Trick的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值