在数据分析中,对缺失值解决方案的分析

1. 删除缺失值

  • 使用dropna函数来删除空值,具体用法如下

    # 函数用法
    df.dropna(    
        axis=0,     
        how='any',     
        inplace=True,     
        subset=['列名',...],    
        thresh=10
    )
    ​
    df.drop() # 按列删除
  • dropna函数参数解释

    • axis=0

      • 可选参数 ,默认为0按行删

      • 0, or 'index':删除包含缺失值的行

      • 1, or 'columns':删除包含缺失值的列

    • how='any'

      • 可选参数,默认为any

      • any: 如果存在NA值,则删除该行或列

      • all: 如果所有值都是NA,则删除该行或列

    • inplace=False

      • 可选参数,不建议使用这个参数

      • 默认False, 不对原数据集进行修改

      • inplce=True,对原数据集进行修改

    • subset接收一个列表

      • 接收一个列表,列表中的元素为列名: 对特定的列进行缺失值删除处理

    • thresh=n

      • 可选参数

      • 参数值为int类型,按行去除NaN值,去除NaN值后该行剩余数值的数量(列数)大于等于n,便保留这一行

2.缺失值替换

  • Pandas 的 fillna 方法

    • 常数填充:用指定的常数填充缺失值。

      df['column'].fillna(value, inplace=True)

    • 前向填充:用前一个有效值填充缺失值。

      df['column'].fillna(method='ffill', inplace=True)

    • 后向填充:用后一个有效值填充缺失值。

      df['column'].fillna(method='bfill', inplace=True)

    • 使用均值、中位数或众数填充

      df['column'].fillna(df['column'].mean(), inplace=True) # 均值 df['column'].fillna(df['column'].median(), inplace=True) # 中位数 df['column'].fillna(df['column'].mode()[0], inplace=True) # 众数

  • Pandas 的 interpolate 方法

    • 线性插值填充缺失值。

      df['column'].interpolate(method='linear', inplace=True)

  • Scikit-learn 的 SimpleImputer

    • 使用均值、中位数或众数填充

      from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy='mean') # 或者 'median', 'most_frequent' df['column'] = imputer.fit_transform(df[['column']])

        选择填充缺失值的方法取决于具体的数据和分析的需求。例如,对于时间序列数据,使用前向或后向填充可能更合理;而对于非时间序列数据,使用均值、中位数或众数填充可能更合适。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值