信号与系统中间变量法的推导以及中间变量法与状态空间方程的关系

状态空间表达式有很多种,选择的状态空间变量不同,得到的状态空间表达式就不同,下文是介绍了matlab中tf2ss得到的状态空间方程的推导过程,并介绍了其推导过程与信号与系统中的中间变量法的联系。
假设现在有微分方程:
a y ′ ( t ) + b y ( t ) = a 1 f ′ ( t ) + b 1 f ( t ) ay'(t)+by(t)=a_1f'(t)+b_1f(t) ay(t)+by(t)=a1f(t)+b1f(t)
则设置中间变量 x ( t ) x(t) x(t)
有:
y ( t ) = a 1 x ′ ( t ) + b 1 x ( t ) y(t)=a_1x'(t)+b_1x(t) y(t)=a1x(t)+b1x(t)
f ( t ) = a x ′ ( t ) + b x ( t ) f(t)=ax'(t)+bx(t) f(t)=ax(t)+bx(t)
利用LTI性质可以推导如下:
请添加图片描述
这个过程主要是通过凑输出,将输出凑为 y ( t ) y(t) y(t)从而看 x ( t ) x(t) x(t)的取值。

那么这个中间变量法和状态空间方程有什么关系呢:
可以尝试下列代码(matlab)

A=[-6 11 -6;1 0 0;0 1 0];
B=[1;0;0];
C=[6 4 72];
D=[0];
[num,den]=ss2tf(A,B,C,D)
[a,b,c,d]=tf2ss(num,den)

我们为了将一个传递函数(单输入单输出)转化为状态空间方程,我们可以用现代控制理论中找状态变量的方式,也可以用中间变量作为桥梁来写出状态空间方程。
对于下列这样的传递函数应该如何写出状态空间方程呢:
在这里插入图片描述
我们可以将其写成微分方程的形式:
y ′ ′ ′ ( t ) + 6 y ′ ′ ( t ) − 11 y ′ ( t ) + 6 y ( t ) = 6 f ′ ′ ( t ) + 4 f ′ ( t ) + 72 f ( t ) y'''(t)+6y''(t)-11y'(t)+6y(t)=6f''(t)+4f'(t)+72f(t) y′′′(t)+6y′′(t)11y(t)+6y(t)=6f′′(t)+4f(t)+72f(t)
根据中间变量法我们有:
y ( t ) = 6 m ′ ′ ( t ) + 4 m ′ ( t ) + 72 m ( t ) y(t)=6m''(t)+4m'(t)+72m(t) y(t)=6m′′(t)+4m(t)+72m(t)
f ( t ) = m ′ ′ ′ ( t ) + 6 m ′ ′ ( t ) − 11 m ′ ( t ) + 6 m ( t ) f(t)=m'''(t)+6m''(t)-11m'(t)+6m(t) f(t)=m′′′(t)+6m′′(t)11m(t)+6m(t)
我们将状态变量设为
x = [ m ′ ′ m ′ m ] x= \left[ \begin{matrix} m''\\ m'\\ m \end{matrix} \right] x= m′′mm
则有
x ˙ = [ − 6 − 11 − 6 1 0 0 0 1 0 ] x + [ 1 0 0 ] u \dot x= \left[ \begin{matrix} -6 & -11 & -6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] x+\left[ \begin{matrix} 1 \\ 0\\ 0 \end{matrix} \right] u x˙= 6101101600 x+ 100 u
y = [ 6 4 72 ] x y= \left[ \begin{matrix} 6 &4&72 \end{matrix} \right] x y=[6472]x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值