python_tensorflow 神经网络实现鸢尾花分类

参考资料:
https://www.bilibili.com/video/BV1B7411L7Qt?p=8

数据集读入

从sklearn包 datasets 读入数据集,语法为:
from sklearn.datasets import load_iris
x_data = datasets.load_iris().data 返回iris数据集所有输入特征
y_data = datasets.load_iris().target 返回iris数据集所有标签

增加可读性的格式转换

x_data = DataFrame(x_data, columns=[‘花萼长度’, ‘花萼宽度’, ‘花瓣长度’, ‘花瓣宽度’])
#为增加可读性将数据转化成表格的形式,每一列增加中文标签
#为表格增加行索引(左侧)和列标签(上方)

pd.set_option(‘display.unicode.east_asian_width’, True)
#设置列名对齐

x_data[‘类别’] = y_data
#表格中新加一列,列标签为‘类别’,数据为y_data

from sklearn import datasets    #加载sklearn包
from pandas import DataFrame    #加载pandas包
import pandas as pd

x_data = datasets.load_iris().data  # .data返回iris数据集所有输入特征
y_data = datasets.load_iris().target  # .target返回iris数据集所有标签
print("x_data from datasets(未增加任何格式,直接显示数据): \n", x_data)
print("y_data from datasets(未增加任何格式,直接显示数据): \n", y_data)

x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])
# 为增加可读性将数据转化成表格的形式,每一列增加中文标签
# 为表格增加行索引(左侧)和列标签(上方)
pd.set_option('display.unicode.east_asian_width', True)
# 设置列名对齐
print("x_data add index(增加格式): \n", x_data)

x_data['类别'] = y_data
# 表格中新加一列,列标签为‘类别’,数据为y_data
print("x_data add a column(增加格式): \n", x_data)

#类型维度不确定时,建议用print函数打印出来确认效果

运行结果:
x_data from datasets(未增加任何格式,直接显示数据):
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
……………………
……………………
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
y_data from datasets(未增加任何格式,直接显示数据):
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
x_data add index(增加格式):
花萼长度 花萼宽度 花瓣长度 花瓣宽度
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
… … … … …
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8

[150 rows x 4 columns]
x_data add a column(增加格式):
花萼长度 花萼宽度 花瓣长度 花瓣宽度 类别
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
… … … … … …
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2

[150 rows x 5 columns]

数据集乱序

• 生成训练集和测试集(即 x_train / y_train)
• 配成 (输入特征,标签) 对,每次读入一小撮(batch)搭建网络
• 定义神经网路中所有可训练参数

#随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
#seed: 随机数种子,是一个整数,当设置相同的随机数种子之后,每次生成的随机数都一样
np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

#将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
#将打乱后的数据集的前120个数据取出来作为训练集
x_test = x_data[-30:]
y_test = y_data[-30:]
#将打乱后的数据集的后30个数据取出来作为测试集

#转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

#from_tensor_slices函数使输入特征和标签值一一对应。配对打包
#(把数据集分批次打包,每32组输入特征和标签对儿打包为一个batch,每个批次batch组数据)
#喂入神经网络时会以batch为单位喂入
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

#定义神经网络的所有可训练参数
#生成神经网络的参数,4个输入特征故,输入层为4个输入节点;
#输出节点等于分类数,因为3分类,故输出层为3个神经元
#所以将参数w1定义为4行3列的可训练张量
#b1必须与w1的列数维度一样,w1为3列所以b1为3
#用tf.Variable()标记参数可训练
#使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

这部分代码如下:

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
#将打乱后的数据集的前120个数据取出来作为训练集
x_test = x_data[-30:]
y_test = y_data[-30:]
#将打乱后的数据集的后30个数据取出来作为测试集

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。配对打包
# (把数据集分批次打包,每32组输入特征和标签对儿打包为一个batch,每个批次batch组数据)
# 喂入神经网络时会以batch为单位喂入
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 定义神经网络的所有可训练参数
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;
# 输出节点等于分类数,因为3分类,故输出层为3个神经元
# 所以将参数w1定义为4行3列的可训练张量
# b1必须与w1的列数维度一样,w1为3列所以b1为3
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

设置其他参数

学习率lr
损失函数loss
准确率acc
循环次数epoch
最后的损失函数

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

参数优化(训练部分)

• 嵌套循环迭代,在with结构中更新参数,求得损失函数loss对每个可训练参数的偏导数,更新这些可训练参数,显示当前loss

# 训练部分
#使用两层for循环来更新参数
for epoch in range(epoch):
#第一层for循环是针对整个数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):
    #第二层for循环针对batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确

        # 计算loss对w1,b1的偏导数
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad
        # b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))

    # 训练集有120组数据
    # batch里面有32个,每个step只能喂入32组数据,需要batch级别循环4次,所以下面loss除以4
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求得每次迭代的平均loss,记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

测试效果

• 每遍历一次数据集,计算当前参数前向传播后的准确率,显示当前acc(准确率)

 # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1  #y表示预测结果,前向传播计算出y
        y = tf.nn.softmax(y)            #y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大概率值的索引号,即预测的分类

        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)    #调整数据类型与标签一致

        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        # 预测和标签一致的则correct自加1
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number,即correct的个数除以测试集中数据的总数
    acc = total_correct / total_number

    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

acc / loss可视化

• 画出损失函数loss和准确率acc的曲线变化图

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy(准确率) 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")
# 标出每个epoch时的准确率
# 逐点画出test_acc值并连线,连线图标是Accuracy(准确率)
plt.legend()
plt.show()

python代码汇总:

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
#将打乱后的数据集的前120个数据取出来作为训练集
x_test = x_data[-30:]
y_test = y_data[-30:]
#将打乱后的数据集的后30个数据取出来作为测试集

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。配对打包
# (把数据集分批次打包,每32组输入特征和标签对儿打包为一个batch,每个批次batch组数据)
# 喂入神经网络时会以batch为单位喂入
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 定义神经网络的所有可训练参数
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;
# 输出节点等于分类数,因为3分类,故输出层为3个神经元
# 所以将参数w1定义为4行3列的可训练张量
# b1必须与w1的列数维度一样,w1为3列所以b1为3
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1

# 下面这两个是画图用的空列表
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据

epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
#使用两层for循环来更新参数
for epoch in range(epoch):
#第一层for循环是针对整个数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):
    #第二层for循环针对batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确

        # 计算loss对w1,b1的偏导数
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad
        # b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))

    # 训练集有120组数据
    # batch里面有32个,每个step只能喂入32组数据,需要batch级别循环4次,所以下面loss除以4
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求得每次迭代的平均loss,记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1  #y表示预测结果,前向传播计算出y
        y = tf.nn.softmax(y)            #y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大概率值的索引号,即预测的分类

        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)    #调整数据类型与标签一致

        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        # 预测和标签一致的则correct自加1
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number,即correct的个数除以测试集中数据的总数
    acc = total_correct / total_number

    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy(准确率) 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")
# 标出每个epoch时的准确率
# 逐点画出test_acc值并连线,连线图标是Accuracy(准确率)
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值