1、切片索引
1.1 一维数组的索引
- 一维数组的索引有点类似list的索引方式,list[1:5],即从第1取到第4个元素,不包含5,左闭右开。
- list[2:-1],即从第2个元素取到倒数第2个元素
- list[2:],即从第2个元素取到倒数第1个元素
import numpy as np
x=np.arange(10)
print("x=",x)
#基础索引
print("x[1]=",x[1])
x= [0 1 2 3 4 5 6 7 8 9]
x[1]= 1
1.2 二维数组的索引
array[row,column]
此外,numpy切片修改数组中的值会修改原数组
import numpy as np
y=np.arange(12).reshape(3,4)
print("y=",y)
#返回y[1,2]元素,下标从0开始
print("y[1,2]=",y[1,2])
#返回2,3行元素
print("y[1:]=",y[1:])
#返回2,3列元素
print("y[:,1:3]=",y[:,1:3])
y= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y[1,2]= 6
y[1:]= [[ 4 5 6 7]
[ 8 9 10 11]]
y[:,1:3]= [[ 1 2]
[ 5 6]
[ 9 10]]
2、神奇索引
- 即下标为列表,根据列表下标找数组中的函数值
2.1 一维索引
import numpy as np
x=np.random.randint(1,10,10)
print("x=",x)
#位置下标列表
index=[3,4,7]
#y代表数组x中下标为3,4,7对应的元素值
y=x[index]
print("y=",y)
x= [8 2 9 8 1 8 2 9 4 9]
y= [8 1 9]
import numpy as np
x=np.random.randint(1,10,10)
print("x=",x)
#位置下标列表
index=np.array([[1,2],[3,4]])
#y代表数组x中下标为3,4,7对应的元素值
y=x[index]
print("y=",y)
x= [2 9 5 2 6 3 6 2 1 5]
y= [[9 5]
[2 6]]
2.2 二维索引
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
# 筛选多行,列可以省略,即index=[0,2]等价index=[[0,2],:]
index=[0,2]
print("x[index]=",x[index])
x= [[19 98 34 59]
[68 54 84 39]
[55 3 28 37]]
x[index]= [[19 98 34 59]
[55 3 28 37]]
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
# 筛选多列,行不可以省略
print("x[index]=",x[:,[2,3]])
x= [[58 77 44 34]
[35 34 80 17]
[46 8 20 2]]
x[index]= [[44 34]
[80 17]
[20 2]]
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
# 同时指定行与列,则返回的一维的数组
print("x[index]=",x[[0,1,2],[2,1,2]])
x= [[97 46 37 32]
[50 41 50 18]
[12 41 51 28]]
x[index]= [37 41 51]
3、布尔索引
3.1 一维数组
import numpy as np
x=np.random.randint(1,100,10)
print("x=",x)
#数组中大于5的数为True,小于5的数为False
print(x>5)
x= [ 3 62 68 80 99 17 87 73 16 55]
[False True True True True True True True True True]
import numpy as np
x=np.random.randint(1,100,10)
print("x=",x)
#输出数组中大于50的数字
print(x[x>50])
x= [64 92 74 28 36 23 18 46 39 44]
[64 92 74]
import numpy as np
x=np.random.randint(1,100,10)
print("x=",x)
#数组中小于50的数变为0,大于等于50的数变为1
x[x<50]=0
x[x>=50]=1
print(x)
x= [75 33 28 46 75 55 90 22 43 11]
[1 0 0 0 1 1 1 0 0 0]
3.2二维数组
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
#数组中大于50的数为True,小于50的数为False
print(x>50)
x= [[40 68 46 14]
[80 19 90 10]
[33 86 52 36]]
[[False True False False]
[ True False True False]
[False True True False]]
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
#输出数组中大于50的数
print(x[x>50])
x= [[28 99 80 56]
[16 47 66 2]
[61 12 79 32]]
[99 80 56 66 61 79]
条件组合查询
import numpy as np
x=np.random.randint(1,100,(3,4))
print("x=",x)
#输出大于50并且为偶数的数
condition=(x>50) & (x%2==0)
print(x[condition])
x= [[69 10 70 78]
[70 27 15 52]
[75 89 18 6]]
[70 78 70 52]