(4)量子态矢与算子(算符)

1.基本定义

—— 态矢与算符,是量子力学及量子信息中最重要的概念之二(即使一个系统没有哈密顿量也存在态矢与算符)
——态矢(state vector),代表量子态的状态,可标记为 ∣ ψ ⟩ |\psi\rangle ψ(狄拉克符号表示);算子或算符(operator),定义为对态矢或算子的操作,可记为 O ^ \hat{O} O^
——态矢和算子所在的空间,被称为希尔伯特空间(态矢/量子的希尔伯特空间)
——定义态矢和算子的是那些与基矢选择无关的性质:
a.内积: ⟨ ψ ∣ φ ⟩ \langle\psi|\varphi\rangle ψφ(保真度) ⟨ φ ∣ O ^ ∣ φ ⟩ \langle\varphi|\hat{O}|\varphi\rangle φO^φ(均值或观测值)等
b.迹(trace)trace( O ^ \hat{O} O^);
c.对易子 [ O ^ , P ^ ] = O ^ P ^ − P ^ O ^ [\hat{O},\hat{P}] = \hat{O}\hat{P}-\hat{P}\hat{O} [O^,P^]=O^P^P^O^
d.本征关系 O ^ ∣ φ ⟩ = O ∣ φ ⟩ \hat{O}|\varphi\rangle = O|\varphi\rangle O^φ=Oφ
注:右矢(| ⟩ \rangle )定义在希尔伯特空间,左矢( ⟨ ∣ \langle| )定义在对偶希尔伯特空间


例:泡利算符 σ ^ x \hat{\sigma}^x σ^x, σ ^ y \hat{\sigma}^y σ^y, σ ^ z \hat{\sigma}^z σ^z
满足如下性质: [ σ ^ a , σ ^ b ] = 2 i ε a b c σ ^ c [\hat{\sigma}^a,\hat{\sigma}^b] = 2i\varepsilon_{abc}\hat{\sigma}^c [σ^a,σ^b]=2iεabcσ^c, ( σ ^ a ) 2 = − i σ ^ x σ ^ y σ ^ z = I (\hat{\sigma}^a)^2 = -i\hat{\sigma}^x\hat{\sigma}^y\hat{\sigma}^z = I (σ^a)2=iσ^xσ^yσ^z=I(力学基础)
自旋算符给出了SU(2)群的生成元(群论里的知识)
注:代数性质是定义算符的核心


态矢和算子在给定基矢下的展开系数,可由向量或矩阵表示
基矢:定义为一组态矢{ ∣ i ⟩ |i\rangle i} ,满足正交完备性:
⟨ i ∣ i ′ ⟩ = δ i i ′ , ∑ i ∣ i ⟩ ⟨ i ∣ = I \langle i|i^{'}\rangle = \delta_{ii{'}} , \sum_i|i\rangle\langle i| = I ii=δii,iii=I
注:(a)迪拉克矩阵 δ i i ′ = 1 当 i = i ′ \delta_{ii{'}} = 1当i= i^{'} δii=1i=i,否则 δ i i ′ = 0 \delta_{ii{'}} = 0 δii=0
(b)在特殊情况下,基矢可以不正交,也可以不完备或过完备;
(c) ∣ i ⟩ ⟨ i ∣ = ∣ i ⟩ ⨂ ⟨ i ∣ |i\rangle\langle i| = |i\rangle\bigotimes\langle i| ii=ii ⨂ \bigotimes 称为直积、张量积、外积或克伦内克积。


2.基矢与系数

例: σ ^ z \hat{\sigma}^z σ^z的两个本征态,记为 ∣ ↑ ⟩ |\uparrow\rangle ∣ ↓ ⟩ |\downarrow\rangle (在量子信息与量子计算领域,常被记作为 ∣ 0 ⟩ |0\rangle 0 ∣ 1 ⟩ |1\rangle 1,与经典比特的两个状态相对应),其本征值分别为1与-1.
—— ∣ ↑ ⟩ |\uparrow\rangle ∣ ↓ ⟩ |\downarrow\rangle 构成一组正交完备基矢,满足 ⟨ i ∣ i ′ ⟩ = δ i i ′ , ∣ ↑ ⟩ ⟨ ↑ ∣ + ∣ ↓ ⟩ ⟨ ↓ ∣ = I \langle i|i^{'}\rangle = \delta_{ii{'}},|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow| =I ii=δii,+=I
——设定该组基矢的矢量表示为:
∣ 1 ⟩ = ∑ s = 0 1 ϕ s ∣ s ⟩ , |1\rangle=\sum_{s=0}^{1} \phi_{s}|s\rangle, \quad 1=s=01ϕss, 系数 ϕ = [ 0 1 ] T \phi=\left[\begin{array}{cc}0 & 1\end{array}\right]^{T} ϕ=[01]T
∣ 1 ⟩ = ϕ 0 ∣ 0 ⟩ + ϕ 1 ∣ 1 ⟩ |1\rangle= \phi_{0}|0\rangle+\phi_{1}|1\rangle 1=ϕ00+ϕ11,即只有当 ϕ 0 = 0 , ϕ 1 = 1 \phi_{0} = 0,\phi_{1} = 1 ϕ0=0ϕ1=1时等式成立
∣ 0 ⟩ = ∑ s = 0 1 ϕ s ′ ∣ s ⟩ , |0\rangle=\sum_{s=0}^{1} \phi_{s}^{\prime}|s\rangle, \quad 0=s=01ϕss, 系数 ϕ ′ = [ 1 0 ] T \phi^{\prime}=\left[\begin{array}{cc}1 & 0\end{array}\right]^{T} ϕ=[10]T
注:此后都标记 ∣ ↑ ⟩ = ∣ 1 ⟩ , ∣ ↓ ⟩ = ∣ 0 ⟩ |\uparrow\rangle=|1\rangle,|\downarrow\rangle=|0\rangle =1,=0
——任意单个自旋的量子态可写成基矢的线性叠加: ∣ φ ⟩ = φ 0 ∣ 0 ⟩ + φ 1 ∣ 1 ⟩ |\varphi\rangle = \varphi_{0}|0\rangle +\varphi_{1}|1\rangle φ=φ00+φ11可见,系数𝜑为一个二维向量。
——态矢和算子的定义是独立于基矢的,因此,态并不等价于某个向量,算子也并不等价于某个矩阵;但在不引起误解的情况下,可直接可认为即为对应的系数向量算子即为对应的系数矩阵,如 ∣ 1 ⟩ = [ 0 1 ] T |1\rangle=\left[\begin{array}{cc}0 & 1 \end{array}\right]^{T} 1=[01]T(真正的含义是:1态在给定基底下的系数为0,1)
——规定:左矢(bra) ⟨ φ ∣ \langle\varphi| φ 对应于行向量,右矢(ket) ∣ φ ⟩ |\varphi\rangle φ对应于列向量; ⟨ φ ∣ \langle\varphi| φ ∣ φ ⟩ |\varphi\rangle φ的转置共轭。(复数中需要取共轭)


例:量子态内积对应于系数向量的内积:
⟨ φ ∣ ψ ⟩ = [ φ 0 ∗ φ 1 ∗ ] [ ψ 0 ψ 1 ] T \quad\langle\varphi \mid \psi\rangle=\left[\begin{array}{ccc}\varphi_{0}^{*} & \left.\varphi_{1}^{*}\right]\left[\psi_{0}\right. & \psi_{1}\end{array}\right]^{T} φψ=[φ0φ1][ψ0ψ1]T
证明: 由 ∣ ψ ⟩ = ∑ i ψ i ∣ i ⟩ , ∣ φ ⟩ = ∑ j φ j ∣ j ⟩ |\psi\rangle=\sum_{i} \psi_{i}|i\rangle, \quad|\varphi\rangle=\sum_{j} \varphi_{j}|j\rangle ψ=iψii,φ=jφjj
⟨ φ ∣ ψ ⟩ = ∑ i j φ j ∗ ψ i ⟨ j ∣ i ⟩ \langle\varphi \mid \psi\rangle=\sum_{i j} \varphi_{j}^{*} \psi_{i}\langle j \mid i\rangle φψ=ijφjψiji
由基矢的正交归一性 ⟨ j ∣ i ⟩ = δ j i , \langle j \mid i\rangle=\delta_{j i}, \quad ji=δji, ⟨ φ ∣ ψ ⟩ = ∑ i j φ j ∗ ψ i δ j i = ∑ i φ i ∗ ψ i \langle\varphi \mid \psi\rangle=\sum_{i j} \varphi_{j}^{*} \psi_{i} \delta_{j i}=\sum_{i} \varphi_{i}^{*} \psi_{i} φψ=ijφjψiδji=iφiψi
证毕


基矢的矢量表示确定之后,可用这组基矢对算符做展开,得到算符的系数。例如,泡利算符的展开系数为2 × 2的矩阵,满足:
σ ^ α = ∑ i j = 0 1 σ i j a ∣ i ⟩ ⟨ j ∣ \hat{\sigma}^\alpha = \sum_{ij = 0}^1\sigma_{ij}^a|i\rangle\langle j| σ^α=ij=01σijaij(再次强调: σ ^ α \hat{\sigma}^\alpha σ^α是希尔伯特空间中的算子, σ i j a \sigma_{ij}^a σija是一个二阶张量(矩阵),一定要注意二者的区别和联系;在不引起误解的情况下,算符与其系数可混用


σ ^ α = ∑ i j = 0 1 σ i j a ∣ i ⟩ ⟨ j ∣ \hat{\sigma}^\alpha = \sum_{ij = 0}^1\sigma_{ij}^a|i\rangle\langle j| σ^α=ij=01σijaij以及基矢的正交归一性,易得算符与其系数之间满足:
σ i j a = ⟨ i ∣ σ ^ α ∣ j ⟩ \sigma_{ij}^a=\langle i|\hat{\sigma}^\alpha|j\rangle σija=iσ^αj证明如下:
σ ^ α = σ 00 a ∣ 0 ⟩ ⟨ 0 ∣ + σ 10 a ∣ 1 ⟩ ⟨ 0 ∣ + σ 01 a ∣ 0 ⟩ ⟨ 1 ∣ + σ 11 a ∣ 1 ⟩ ⟨ 1 ∣ \hat{\sigma}^\alpha = \sigma_{00}^a|0\rangle\langle 0| + \sigma_{10}^a|1\rangle\langle 0|+ \sigma_{01}^a|0\rangle\langle 1|+ \sigma_{11}^a|1\rangle\langle 1| σ^α=σ00a00+σ10a10+σ01a01+σ11a11
假如两边同时乘以 ∣ 0 ⟩ ⟨ 0 ∣ |0\rangle\langle 0| 00,即:
⟨ 0 ∣ σ ^ α ∣ 0 ⟩ = σ 00 a ⟨ 0 ∣ 0 ⟩ ⟨ 0 ∣ 0 ⟩ + σ 10 a ⟨ 0 ∣ 1 ⟩ ⟨ 0 ∣ 0 ⟩ + σ 01 a ⟨ 0 ∣ 0 ⟩ ⟨ 1 ∣ 0 ⟩ + σ 11 a ⟨ 0 ∣ 1 ⟩ ⟨ 1 ∣ 0 ⟩ \langle 0|\hat{\sigma}^\alpha|0\rangle = \sigma_{00}^a\langle 0|0\rangle\langle 0|0\rangle + \sigma_{10}^a\langle 0|1\rangle\langle 0|0\rangle+ \sigma_{01}^a\langle 0|0\rangle\langle 1|0\rangle+ \sigma_{11}^a\langle 0|1\rangle\langle 1|0\rangle 0σ^α0=σ00a0000+σ10a0100+σ01a0010+σ11a0110
因为 ⟨ 1 ∣ 0 ⟩ \langle 1|0\rangle 10 ⟨ 0 ∣ 1 ⟩ \langle 0|1\rangle 01都等于0, ⟨ 0 ∣ 0 ⟩ \langle 0|0\rangle 00等于1
所以原式等于: ⟨ 0 ∣ σ ^ α ∣ 0 ⟩ = σ 00 a \langle 0|\hat{\sigma}^\alpha|0\rangle = \sigma_{00}^a 0σ^α0=σ00a,同理其它条件情况下也成立。

通过 σ ^ z \hat{\sigma}^z σ^z的本征方程及三个泡利算符的对易关系,可以求得其在该组基矢下的系数矩阵(在不引起误解的情况下,提及某张量时,可省略其下标,如 σ i j a \sigma_{ij}^a σija,写为 σ x \sigma^x σx等)
σ x = [ 0 1 1 0 ] , σ y = [ 0 i − i 0 ] , σ z = [ 1 0 0 − 1 ] \sigma^{x}=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right], \quad \sigma^{y}=\left[\begin{array}{cc} 0 & i \\ -i & 0 \end{array}\right], \quad \sigma^{z}=\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] σx=[0110],σy=[0ii0],σz=[1001]
(注:自旋算符泡利算符相差因子2, 即 s ^ α = σ ^ α / 2 ) \left.\hat{s}^{\alpha}=\hat{\sigma}^{\alpha} / 2\right) s^α=σ^α/2)

2.1 代码实例(生成自旋算符)

import numpy as np

#定义函数
def spin_operator_one_half():
	op = dict()
	op['i'] = np.eye(2)#identity 
	op['x'] = np.zeros((2,2))
	op['x'][0, 1] = 1 / 2
    op['x'][1, 0] = 1 / 2
    op['y'] = np.zeros((2, 2), dtype=np.complex)
    op['y'][0, 1] = 1j / 2
    op['y'][1, 0] = -1j / 2
    op['z'] = np.zeros((2, 2))
    op['z'][0, 0] = 1 / 2
    op['z'][1, 1] = -1 / 2
    return op
#输出
spin = spin_operator_one_half()
print('Spin-x operator = ')
print(spin['x'])
print('\nSpin-y operator = ')
print(spin['y'])
print('\nSpin-z operator = ')
print(spin['z'])

3.系数运算

给定基矢,确定量子态与算子的向量与矩阵表示之后,相关的计算变为向量与矩阵的运算


例:定义上升算符 σ ^ + \hat{\sigma}^{+} σ^+ 和下降算符 σ ^ − , \hat{\sigma}^{-}, σ^, 其在 σ ^ Z \hat{\sigma}^{Z} σ^Z 的本征基矢下的矩阵表示为
σ + = [ 0 1 0 0 ] , σ − = [ 0 0 1 0 ] \sigma^{+}=\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right], \quad \sigma^{-}=\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right] σ+=[0010],σ=[0100]
σ ^ + ∣ 0 ⟩ = ∣ 1 ⟩ , σ ^ − ∣ 1 ⟩ = ∣ 0 ⟩ , σ ^ + ∣ 1 ⟩ = σ ^ − ∣ 0 ⟩ = 0 , \hat{\sigma}^{+}|0\rangle=|1\rangle, \quad \hat{\sigma}^{-}|1\rangle=|0\rangle, \quad \hat{\sigma}^{+}|1\rangle=\hat{\sigma}^{-}|0\rangle=0, σ^+0=1,σ^1=0,σ^+1=σ^0=0, 分别对应于
[ 0 1 0 0 ] [ 0 1 ] = [ 1 0 ] , [ 0 0 1 0 ] [ 1 0 ] = [ 0 1 ] , [ 0 1 0 0 ] [ 1 0 ] = [ 0 0 1 0 ] [ 0 1 ] = [ 0 0 ] \left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right]\left[\begin{array}{l} 0 \\ 1 \end{array}\right]=\left[\begin{array}{l} 1 \\ 0 \end{array}\right], \quad\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} 1 \\ 0 \end{array}\right]=\left[\begin{array}{l} 0 \\ 1 \end{array}\right], \quad\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right]\left[\begin{array}{l} 1 \\ 0 \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} 0 \\ 1 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] [0010][01]=[10],[0100][10]=[01],[0010][10]=[0100][01]=[00]
算符的连乘对应于矩阵乘, 满足结合律。例如 σ ^ + σ ^ − ∣ 1 ⟩ = − ∣ 0 ⟩ , \hat{\sigma}^{+} \hat{\sigma}^{-}|1\rangle=-|0\rangle, σ^+σ^1=0, 对应
[ 1 0 0 − 1 ] [ 0 0 1 0 ] [ 1 0 ] = − [ 0 1 ] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} 1 \\ 0 \end{array}\right]=-\left[\begin{array}{l} 0 \\ 1 \end{array}\right] [1001][0100][10]=[01]
注:矩阵积可写为求和的形式, 例如 σ + φ ⇔ Σ j σ i j + φ j , \boldsymbol{\sigma}^{+} \boldsymbol{\varphi} \Leftrightarrow \Sigma_{j} \boldsymbol{\sigma}_{i j}^{+} \boldsymbol{\varphi}_{\boldsymbol{j}}, σ+φΣjσij+φj, 即进行相应的指标收缩(将一个算符作用在一个算符上,或者将一个算符作用在一个向量上)
注 :指标收缩是张量网络的核心

  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值