量子计算入门基础学习(四——对角化,算符 迹 张量积)

大家好,欢迎来到量子计算的第四部分,如果您是第一次观看我的博客,如果您也是和我一样刚入门量子力学或是量子计算相关的学习,纠结于量子的抽象与晦涩难懂,那么本专栏(量子计算)一定是您的不二之选,学海本就苦,愿你有甜心,如果觉得博主写的有错误的直接在评论区留言,博主也是大一的一名程序狗,希望大家多多支持,点点赞,另外,本专题是每周一更或二更,有需要的小伙伴可以点点专注!

一 . 对角化 谱分解 对易和反对易

我们先来温故一下上周的学习内容,主角戏是量子态叠加与纠缠的区别与联系,除此之外,我们还了解了 表象,算符的本征值与本征矢量,我们最后还废了较大的力气学习并理解了表象变换在牛顿经典力学体系中和量子力学体系中的一个非常好的例子,那么,接下来,我们顺着上次的内容,继续向大家介绍一下量子中的其他重要知识点: 对角化 谱分解 对易和反对易
在这里插入图片描述

1. 对角化与谱分解

以线代为基础,我们先看这个 可对角化矩阵

如果一个矩阵与一个对角矩阵相似,我们就称这个矩阵可经相似变换对角化,简称可对角化,也就是说,如果存在一个可逆矩阵 P 使得 P − 1 A P P^{-1} A P P1AP 是对角矩阵,则它就被称为可对角化的

这个在线代中都是学过的,非常重要的知识,有忘记的小伙伴可以去回顾一下相似矩阵那块的知识!

举例:Pauli 算符 σ 3 = σ z = Z = ∣ 0 ⟩ ⟨ 0 ∣ − ∣ 1 ⟩ ⟨ 1 ∣ = ( 1 0 0 − 1 ) \sigma_{3}=\sigma_{z}=Z=|0\rangle\langle 0|-| 1\rangle\langle 1|=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) σ3=σz=Z=0011=(1001) 是可对角化的!

对于算符 A A A,我们将其转化为对角表象为:
A = ∑ i n λ i ∣ i ⟩ ⟨ i ∣ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) A=\sum_{i}^{n} \lambda_{i}|i\rangle\langle i|=\left(\begin{array}{cccc} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{array}\right) A=inλiii=λ1000λ2000λn
其基矢 ∣ i ⟩ |i\rangle i 是 A 的本征矢量,这一方程也被称为算符 A 的谱分解, A 的本征值集合构成它的谱!

这里我们简单的学习一下这个谱分解,大部分线代教材上面都是没有这个知识点,本人始终保持服务大家的宗旨(手动滑稽~~),关注点起来!

特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法

分解过程:

  1. A 是一个 N×N 的方阵,且有 N 个线性无关的特征向量 q i ( i = 1 , … , N ) q_{i}(i=1, \ldots, N) qi(i=1,,N) ,则根据定义 可以被分解为:
    A = Q Λ Q − 1 \mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} A=QΛQ1
  2. 其中 Q 是N×N方阵,且其第 i 列为 A 的特征向量 。 Λ 是对角矩阵,其对角线上的元素为对应的特征值,即 Λ i i = λ i \Lambda_{i i}=\lambda_{i} Λii=λi ,特别注意,谱分解是有条件的,必须要是 可对角化矩阵 !

那么它的作用是啥呢?

来看看之前特征值分解的式子,分解得到的 Λ 矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵(矩阵A)变化方向(从主要的变化到次要的变化排列)
当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通过图片来表示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换
)。

2. 正规算符 算符函数 对易和反对易

正规算符的特点和我们之前介绍的幺正算符是相似的!

正规算符 A 的定义为: A A † = A † A \boldsymbol{A} \boldsymbol{A}^{\dagger}=\boldsymbol{A}^{\dagger} \boldsymbol{A} AA=AA

显然,这个时候我们打开上篇和上上篇博客,你会发现,厄米算符和幺正算符都是正规算符

我们在量子力学中研究时,力学量都是以算符来表示的,其载体往往就是算符函数,接下来,我们来看一下算符函数是啥?

在复数域上, 我们一般定义正规算符的函数为:

f ( A ) = ∑ i n f ( λ i ) ∣ i ⟩ ⟨ i ∣ f(\boldsymbol{A})=\sum_{i}^{n} f\left(\lambda_{i}\right)|i\rangle\langle i| f(A)=inf(λi)ii
这里的 A = ∑ i n λ i ∣ i ⟩ ⟨ i ∣ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) \sum_{i}^{n} \lambda_{i}|i\rangle\langle i|=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right) inλiii=λ1000λ2000λn λ i \lambda_{i} λi自然就是这个算符矩阵的特征值嘞, ∣ i ⟩ |i\rangle i 对应的也就是其本征矢量嘞!
为了方便大家理解,我们一起来做个题目:

对于 Pauli 算符 σ z = Z , \sigma_{z}=Z, σz=Z, 计算 e θ Z e^{\theta Z} eθZ

解:

  1. 因为泡利算符 σ 3 = σ z = Z = ∣ 0 ⟩ ⟨ 0 ∣ − ∣ 1 ⟩ ⟨ 1 ∣ = ( 1 0 0 − 1 ) \sigma_{3}=\sigma_{z}=Z=|0\rangle\langle 0|-| 1\rangle\langle 1|=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) σ3=σz=Z=0011=(1001)
  2. 我们只需花10秒钟就可以算出它的2个本征值分别为1和-1,其本征矢量为: ∣ 0 ⟩ |0\rangle 0 ∣ 1 ⟩ |1\rangle 1
  3. 此处的函数定义为了: f ( Z ) = e θ Z f(Z)=e^{\theta Z} f(Z)=eθZ ,再根据定义 f ( A ) = ∑ i n f ( λ i ) ∣ i ⟩ ⟨ i ∣ f(\boldsymbol{A})=\sum_{i}^{n} f\left(\lambda_{i}\right)|i\rangle\langle i| f(A)=inf(λi)ii

逐一代入最后就得到了:
e θ Z = e θ ∣ 0 ⟩ ⟨ 0 ∣ + e − θ ∣ 1 ⟩ ⟨ 1 ∣ = ( e θ 0 0 e − θ ) e^{\theta Z}=e^{\theta}|0\rangle\left\langle 0\left|+e^{-\theta}\right| 1\right\rangle\langle 1|=\left(\begin{array}{cc} e^{\theta} & 0 \\ 0 & e^{-\theta} \end{array}\right) eθZ=eθ00+eθ11=(eθ00eθ)

做完这个题目,我们回忆一下线代中的知识:一般情况下,两个矩阵 AB 是不满足乘法交换律的,即 A B ≠ B A AB\neq BA AB=BA ,但是满足一些特殊条件时,是可以交换的,我们称其为可交换矩阵(在这里带大家复习一下,希望能勾起你对线代的满满回忆!):

  1. A , B 至少有一个为零矩阵,则A,B可交换。
  2. A , B 至少有一个为单位矩阵, 则A , B可交换。
  3. A , B 至少有一个为数量矩阵, 则A , B可交换(数量矩阵是指主对角线上为同一不为0的数,其他的项全是0的方阵)。
  4. A , B 均为对角矩阵,则A , B 可交换。
  5. A, B 均为准对角矩阵(准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵),且对角线上的子块均可交换,则A , B 可交换。

对易和反对易

  • 算符 F ^ \hat{F} F^ G ^ \hat{G} G^ 如果满足条件 F ^ G ^ − G ^ F ^ = 0 \hat{F} \hat{G}-\hat{G} \hat{F}=0 F^G^G^F^=0,则称其为对易的。
  • 算符 F ^ \hat{F} F^ G ^ \hat{G} G^ 如果满足条件 F ^ G ^ + G ^ F ^ = 0 \hat{F} \hat{G}+\hat{G} \hat{F}=0 F^G^+G^F^=0,则称其为反对易的。

希望刚才复习的线代知识有帮助!

除此之外,我们再来了解一下这个 对易子和反对易子

  • 对易子 : [ F ^ , G ^ ] = F ^ G ^ − G ^ F ^ [\hat{F}, \hat{G}]=\hat{F} \hat{G}-\hat{G} \hat{F} [F^,G^]=F^G^G^F^ 对易关系即: [ F , G ] = 0 [F, G]=0 [F,G]=0
  • 反对易子 { F , G } = F ^ G ^ − G ^ F ^ \{F, G\}=\hat{F} \hat{G}-\hat{G} \hat{F} {F,G}=F^G^G^F^ ,反对易关系即: { F , G } = 0 \{F, G\}=0 {F,G}=0

对易式含有几个简单的性质,大家可以动手算算:

  1. [ F ^ , F ^ ] = 0 [\hat{F}, \hat{F}]=0 [F^,F^]=0
  2. [ F ^ , G ^ ] = − [ F ^ , G ^ ] [\hat{F}, \hat{G}]=-[\hat{F}, \hat{G}] [F^,G^]=[F^,G^]
  3. [ F G , P ] = F [ G , P ] + [ F , P ] G [FG, P]=F[G, P]+[F, P] G [FG,P]=F[G,P]+[F,P]G

二 . 矩阵的迹 张量积

1. 矩阵的迹

终于说到我们都熟悉的知识了,多多少少 我们在学习线性代数的时候,老师都提到过 “矩阵的迹 ” 这个概念,其实定义非常的简单。

在线性代数中,一个n×n矩阵 A 的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作 tr(A),即:
tr ⁡ ( A ) = ∑ i = 1 n A i i \operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i} tr(A)=i=1nAii

有几个性质:

  1. 线性性 tr ⁡ ( A + B ) = tr ⁡ ( A ) + tr ⁡ ( B ) \operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B}) tr(A+B)=tr(A)+tr(B)
  2. 数乘性 tr ⁡ ( c A ) = c tr ⁡ ( A ) \operatorname{tr}(c A)=c \operatorname{tr}(A) tr(cA)=ctr(A)
  3. 循环性: tr ⁡ ( A B ) = tr ⁡ ( B A ) \operatorname{tr}(A B)=\operatorname{tr}(B A) tr(AB)=tr(BA)

这三个性质,我觉得只要手上有支笔,都可以用 “显然”这个词来描述他们!

  1. 循环性推广:

tr ⁡ ( A 1 A 2 ⋯ A n − 1 A n ) = tr ⁡ ( A 2 A 3 ⋯ A n A 1 ) = ⋯ = tr ⁡ ( A n A 1 A 2 ⋯ A n − 1 ) \operatorname{tr}\left(A_{1} A_{2} \cdots A_{n-1} A_{n}\right)=\operatorname{tr}\left(A_{2} A_{3} \cdots A_{n} A_{1}\right)=\cdots=\operatorname{tr}\left(A_{n} A_{1} A_{2} \cdots A_{n-1}\right) tr(A1A2An1An)=tr(A2A3AnA1)==tr(AnA1A2An1)
⇒ \Rightarrow tr ⁡ ( U † A U ) = tr ⁡ ( U U † A ) = tr ⁡ ( A ) \operatorname{tr}\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)=\operatorname{tr}\left(\boldsymbol{U} \boldsymbol{U}^{\dagger} \boldsymbol{A}\right)=\operatorname{tr}(\boldsymbol{A}) tr(UAU)=tr(UUA)=tr(A) 这里我们对它做一个幺正变换还是没变。。。。

  1. 矩阵的迹是所有特征值的和,类比推理:算符的迹是其本征值之和
  2. tr ⁡ ( ∣ α ⟩ ⟨ β ∣ ) = ⟨ β ∣ α ⟩ \operatorname{tr}(|\alpha\rangle\langle\beta|)=\langle\beta | \alpha\rangle tr(αβ)=βα
  3. 算符的表象发生变化时,其迹是不变的

在本专栏的前几次博客中,我们曾经较为详细的以图片的形式向大家介绍了啥是张量,以及2个张量之间的乘积是怎样运算的!接下来,我们继续详细的为大家深入体会它!

2. 张量积

一个式子带你瞬间回亿:

∣ 0 ⟩ ⊗ ∣ 1 ⟩ ≡ ∣ 01 ⟩ = ( 1 0 ) ⊗ ( 0 1 ) = ( 1 ⋅ ( 0 1 ) 0 ⋅ ( 0 1 ) ) = ( 0 1 0 0 ) |0\rangle \otimes|1\rangle \equiv|01\rangle=\left(\begin{array}{l} 1 \\ 0 \end{array}\right) \otimes\left(\begin{array}{l} 0 \\ 1 \end{array}\right)=\left(\begin{array}{l} 1 \cdot\left(\begin{array}{l} 0 \\ 1 \end{array}\right) \\ 0 \cdot\left(\begin{array}{l} 0 \\ 1 \end{array}\right) \end{array}\right)=\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right) 0101=(10)(01)=1(01)0(01)=0100

在线性代数中,我们可以利用多个小矢量空间构造大矢量空间 , 这种方法叫做张量积,通常也被称作为 Kronecker积 或直积(direct prodcut),考虑两个空间: n 维的空间 V V V 和 m 维的空间 W W W设两空间基矢分别为:
V : { e ⃗ 1 , e 2 → , ⋯   , e n → } W : { f 1 → , f 2 → , ⋯   , f m → } \begin{array}{ll} \mathcal{V}: & \left\{\vec{e}_{1}, \overrightarrow{e_{2}}, \cdots, \overrightarrow{e_{n}}\right\} \\ \mathcal{W} & : \quad\{\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \cdots, \overrightarrow{f_{m}}\} \end{array} V:W{e 1,e2 ,,en }:{f1 ,f2 ,,fm }
这两个空间的张量积会形成一个 n ⋅ m n\cdot m nm维度的空间: V ⊗ W \mathcal{V} \otimes \mathcal{W} VW, 其基矢为:
e i → ⊗ f j → ( i = 1 , 2 , … , n ; j = 1 , 2 , ⋯   , m ) \overrightarrow{e_{i}} \otimes \overrightarrow{f_{j}}(i=1,2, \ldots, n ; j=1,2, \cdots, m) ei fj (i=1,2,,n;j=1,2,,m)
例如: 在: V ⊗ W \mathcal{V} \otimes \mathcal{W} VW空间中矢量 : v ⃗ ⊗ w ⃗ \vec{v} \otimes \vec{w} v w 可以在基矢 : e ⃗ i ⊗ f ⃗ j \vec{e}_{i} \otimes \vec{f}_{j} e if j 上展开:

v ⃗ ⊗ w ⃗ = ( ∑ i = 1 n v i e ⃗ i ) ⊗ ( ∑ j = 1 m w j f ⃗ j ) = ∑ i = 1 n ∑ j = 1 m v i w j ( e ⃗ i ⊗ f ⃗ j ) \vec{v} \otimes \vec{w}=\left(\sum_{i=1}^{n} v_{i} \vec{e}_{i}\right) \otimes\left(\sum_{j=1}^{m} w_{j} \vec{f}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} v_{i} w_{j}\left(\vec{e}_{i} \otimes \vec{f}_{j}\right) v w =(i=1nvie i)(j=1mwjf j)=i=1nj=1mviwj(e if j)

从线代再过渡到量子力学中,其实大致都没怎么变!

注意几个地方就好:

  1. 两个维度的希伯尔特空间中矢量的张量积,其新形成的希伯尔特空间的维数是原矢量维数的乘积!

  2. ∣ i ⟩ , ∣ j ⟩ |i\rangle, |j\rangle i,j,分别是希伯尔特空间 H 1 , H 2 H_{1},H_{2} H1,H2 的归一正交基,则 ∣ i ⟩ ⊗ ∣ j ⟩ |i\rangle\otimes|j\rangle ij就是 H = H 1 ⊗ H 2 \boldsymbol{H}=\boldsymbol{H}_{1} \otimes \boldsymbol{H}_{2} H=H1H2的正交归一基!

  3. A, B 分别是算符的矩阵表示,A 是m阶方阵, B 是n阶方阵,则
    A ⊗ B = ( A 11 B A 12 B ⋯ A 1 m B A 21 B A 22 B ⋯ A 2 m B ⋮ ⋮ ⋱ ⋮ A m 1 B A m 2 B ⋯ A m m B ) \boldsymbol{A} \otimes \boldsymbol{B}=\left(\begin{array}{cccc}\boldsymbol{A}_{11} \boldsymbol{B} & \boldsymbol{A}_{12} \boldsymbol{B} & \cdots & \boldsymbol{A}_{1 m} \boldsymbol{B} \\ \boldsymbol{A}_{21} \boldsymbol{B} & \boldsymbol{A}_{22} \boldsymbol{B} & \cdots & \boldsymbol{A}_{2 m} \boldsymbol{B} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{A}_{m 1} \boldsymbol{B} & \boldsymbol{A}_{m 2} \boldsymbol{B} & \cdots & \boldsymbol{A}_{m m} \boldsymbol{B}\end{array}\right) AB=A11BA21BAm1BA12BA22BAm2BA1mBA2mBAmmB
    其中, A i j B A_{ij}B AijB 是n阶方阵!

  4. ∣ φ ⟩ ⊗ k = ( ∣ φ ⟩ ⊗ ∣ φ ⟩ ⊗ ⋯ ⊗ ∣ φ ⟩ ) k |\varphi\rangle^{\otimes k}=(|\varphi\rangle \otimes|\varphi\rangle \otimes \cdots \otimes|\varphi\rangle)_{k} φk=(φφφ)k表示直积 k k k 次!

本次博客的内容就到这里了,下期我们说一说张量积有哪些性质,并举例帮助大家理解!

  • 20
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值