(16)张量网络基本定义与维数裁剪

1.张量网络的基本定义

引出:

在MPS态中我们分别定义了辅助指标和物理指标两个概念:
辅助指标(或虚拟指标、几何指标):MPS中两个不同张量所共有的指标
物理指标:没有被共有的指标——代表物理空间的自由度。


MPS是一种特殊的张量网络


1.1定义

于是由MPS态我们给出了张量网络的定义
张量网络的一般定义:由多个张量按照一定的收缩规则构成的模型,被称为张量网络。
其中,收缩规则由网络图确定,即一个节点代表一个张量,与该节点连接的边代表该张量的指标,连接不同节点的边代表对应张量的共有指标,需进行求和计算。
仅连接一个节点的指标被称为开放指标;连接两个节点的指标被称为几何指标
当张量网络被用于表示量子态时,开放指标代表物理空间的自由度,故也被称为物理指标

1.2张量网络表示形式

从张量网络的一般定义出发,不难看出,张量网络为张量的一种表示形式
任意张量网络代表一个张量,该张量的指标为张量网络的开放指标
张量网络可记为 T = t T r ( A , B , . . . ) T = tTr(A,B,...) T=tTr(A,B,...),其中 T T T收缩所有几何指标后得到的张量,括号中为构成张量网络的张量, t T r tTr tTr代表对所有几何指标求和。( t T r tTr tTr=totally trace)
一个高阶张量可表示为不同的张量网络,例如:
下图的两种张量网络均表示一个五阶张量张量 T s 1 s 2 s 3 s 4 s 5 T_{s_1s_2s_3s_4s_5} Ts1s2s3s4s5
在这里插入图片描述

补充:
闭合张量网络:是一类特殊的张量网络,没有开放指标。闭合张量网络可用来表示一大类问题,例如格点模型的配分函数量子多体态的观测量等。

2.张量网络的低秩近似

问题:在给定张量网络中,如何裁剪某一几何指标的维数,使得裁剪前后的误差极小?(裁剪前后张量网络几何结构不变)


张量网络的低秩近似解决的问题是:怎么来裁剪维数以极小化裁剪误差
首先考虑无圈(loop-free)张量网络的几何指标维数裁剪,以下图的张量网络 T s 1 s 2 s 3 s 4 s 5 T_{s_1s_2s_3s_4s_5} Ts1s2s3s4s5为例,考虑对图中红色加粗的辅助指标进行维数裁减。
在这里插入图片描述

解决方案可将上述问题化为矩阵的最优低秩近似问题:求 T [ s 1 s 2 ] [ s 3 s 4 s 5 ] T_{[s_1s_2][s_3s_4s_5]} T[s1s2][s3s4s5]的最优低秩近似
在这里插入图片描述

其中, T [ s 1 s 2 ] [ s 3 s 4 s 5 ] T_{[s_1s_2][s_3s_4s_5]} T[s1s2][s3s4s5]代表将张量reshape成矩阵,两个方括号中的指标被看作是矩阵的左、右指标,分别代表切断待裁剪指标后张量网络两部分中的开放指标。
由于目标问题仅是裁剪红色几何指标的维数,而不改变张量网络的结构等
不推荐通过SVD来实现维数裁剪:因为我们我们会涉及到对一个大张量的计算。(大张量的维数会随着开放指标的个数指数上升)


解决方案:
思路:通过引入非方的裁剪矩阵(isometry矩阵),与连接待裁剪指标的张量进行收缩,实现该指标的维数裁剪。
设连接待裁剪指标的张量为 A ( 1 ) A^{(1)} A(1) A ( 3 ) , A^{(3)}, A(3), 待裁剪指标记为 a , a, a, 裁剪前后该指标的维数为 D D D χ ( \chi(

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algo- rithms typically scale exponentially with data volume and complex- ity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor net- works as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to in- terpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migra- tion of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, prac- tical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值