二维经典晶格模型的TRG方法

Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models

DOI:PRL 99, 120601 (2007)

1.介绍

这种方法在本质上与块自旋方法( block spin methods)相似,但同时建立在量子纠缠理论的基础上。在这个意义上,该技术可以看作是DMRG方法的经典类比。


密度矩阵重正化群(DMRG)技术在一维量子系统的分析中被证明是非常强大的。因此,我们尝试在高维空间发展类似的重整化群方法,这种方法可以解决许多目前难以解决的问题(如2D Hubbard模型)。虽然经典的实空间重整化群方法(如块自旋方法)已经存在多年,但它们从来没有达到DMRG的通一性和精确性。


在二维的情况下,利用量子信息论的思想,提出了一种数值重整化群方法,该方法可以有效地求解任意二维经典晶格模型。我们将这种技术称为张量重整化群方法(TRG)——没有sign problem,并且同样适用于具有复杂权重的模型。


该方法的优点是,它是一个完全各向同性的粗粒化过程,在思想上类似于块自旋方法。因此,它也适合于研究宇宙远距离物理。在理论层面上,这种方法也揭示了经典RG与量子纠缠的关系。


TRG适合在张量网络模型中运用,许多著名的统计力学模型,如Ising模型、Potts模型和六顶点模型,都可以很自然地写成张量网络模型,即所有具有局部相互作用的经典格模型都可以写成张量网络模型

2.具体算法

2.1Tensor network models

我们现在来描述蜂巢晶格上的张量网络模型,首先指定一个(循环对称)张量 T i j k T_{ijk} Tijk i , j , k = 1 , . . . , D i ,j,k= 1,...,D i,j,k=1,...,D),相应的张量网络在蜂窝晶格的每个键上的自由度为 i i i i = 1 , . . . , D i = 1,...,D i=1,...,D
i , j , k , . . . i ,j,k,... i,j,k,...)的权重为: e − S ( i , j , k , . . . ) = T i j k T i l m T j n p T k q r . . . . e^{-S(i ,j,k,...)} = T_{ijk}T_{ilm}T_{jnp}T_{kqr}.... eS(i,j,k,...)=TijkTilmTjnpTkqr.... 即将下图晶格中所有的张量进行乘积
在这里插入图片描述配分函数是所有权值的和:
Z = ∑ i j k . . . e − S ( i , j , k , . . . ) = ∑ i j k . . . T i j k T i l m T j n p T k q r . . . . Z = \sum_{ijk...}e^{-S(i ,j,k,...)} = \sum_{ijk...}T_{ijk}T_{ilm}T_{jnp}T_{kqr}.... Z=ijk...eS(i,j,k,...)=ijk...TijkTilmTjnpTkqr....即,配分函数是通过取所有张量的乘积并且缩并每个键上的指标对得到。

2.2The TRG method

TRG是一种利用实空间RG流计算配分函数Z的方法,下面我们将解释这种方法在蜂窝晶格的情况下。
每个粗粒化迭代由两个单独的步骤组成(粗粒化转换):① 近似 ② 精确
如图所示:
在这里插入图片描述
①近似
首先找到一个张量 S S S:
∑ n S l i n S j k n ≈ ∑ m T i j m T k l m \sum_nS_{lin}S_{jkn} \approx\sum_mT_{ijm}T_{klm} nSlinSjknmTijmTklm注:如何找到 S S S将在后面讲到
这时我们可以重新连接晶格,进行替换:
在这里插入图片描述
整个过程就是:
在这里插入图片描述

注:这时配分函数是通过在新晶格上收缩S张量得到的。
② 精确
我们将三组相邻点组合在一起,用一个粗粒化张量 T ′ T^{'} T格点代替它们:
在这里插入图片描述
其中张量 T ′ T^{'} T是由三角形的三个键缩并得到的:
T i j k ′ = ∑ p q r S k p q S j q r S i r p T^{'}_{ijk} = \sum_{pqr}S_{kpq}S_{jqr}S_{irp} Tijk=pqrSkpqSjqrSirp整个过程就是:
在这里插入图片描述
整个过程中格点的数量减少了三倍。


注:热力学观测值和相关函数可以由两种方法得到:
1.对 F F F求导,其中 F = − l o g ( Z ) F = -log(Z) F=log(Z) Z Z Z为配分函数)
2.评估更一般模型的自由能,其中张量 T i j k T_{ijk} Tijk随位置而变化
注:张量 T T T将收敛于不动点 T ∗ T^{*} T


这种方法不局限于蜂窝晶格,也可以很容易地在其他晶格上实现,如图:
在这里插入图片描述

2.3如何确定 S S S

我们将 ∑ m T i j m T k l m \sum_mT_{ijm}T_{klm} mTijmTklm写为 D 2 × D 2 D^2\times D^2 D2×D2的矩阵 M M M
M l i , j k = ∑ m T i j m T k l m M_{li,jk} = \sum_mT_{ijm}T_{klm} Mli,jk=mTijmTklm我们也可以考虑张量 S l i n S_{lin} Slin为一个 D 2 × D D^2\times D D2×D的矩阵
那么我们 ∑ n S l i n S j k n ≈ ∑ m T i j m T k l m \sum_nS_{lin}S_{jkn} \approx\sum_mT_{ijm}T_{klm} nSlinSjknmTijmTklm问题可以化为找到矩阵 S S S,使得满足:
M = S S T M = SS^T M=SST一般来说,这个因式分解不能精确地完成,因为 M M M的秩为 D 2 D^2 D2,而 S S T SS^T SST的秩最多为 D D D
但是我们可以获得近似的解,其思想是选择误差 ∣ M − S S T ∣ 2 |M-SS^T|^2 MSST2最小的矩阵 S S S,然后对 M M M进行SVD分解得到我们最优的 S S S
更详细的步骤:
(1) M l i , j k = ∑ n s n U l i , n V j k , n ∗ M_{li,jk} = \sum_n s_nU_{li,n}V_{jk,n}^* Mli,jk=nsnUli,nVjk,n(其中 s n s_n sn为奇异值, U , V U,V U,V是酉矩阵)
(2)截断矩阵 U l i , n U_{li,n} Uli,n V j k , n V_{jk,n} Vjk,n,只保留与最大 D D D个奇异值对应的列,于是我们得到矩阵 U ~ l i , n \tilde{U}_{li,n} U~li,n V ~ j k , n \tilde{V}_{jk,n} V~jk,n的维数为 D 2 × D D^2\times D D2×D
(3)最后我们令 S l i n = s n U ~ l i , n S_{lin} = \sqrt{s_n}\tilde{U}_{li,n} Slin=sn U~li,n
注:只要我们稍微调整一下相位模糊度: U l i , n → U l i , n e i ϕ n , V j k , n → V j k , n e − i ϕ n U_{l i, n} \rightarrow U_{l i, n} e^{i \phi_{n}}, V_{j k, n} \rightarrow V_{j k, n} e^{-i \phi_{n}} Uli,nUli,neiϕn,Vjk,nVjk,neiϕn就可以得到要求的因式分解。但是在实践中,忽略相位调整问题往往更方便,直接令 S l i n A = s n U ~ l i , n , S j k n B = s n V ~ j k , n ∗ S_{\mathrm{lin}}^{A}=\sqrt{s_{n}} \tilde{U}_{l i, n}, S_{j k n}^{B}=\sqrt{s_{n}} \tilde{V}_{j k, n}^{*} SlinA=sn U~li,n,SjknB=sn V~jk,n
结果就是我们得到:
∑ n S lin ⁡ A S j k n B ≈ ∑ m T i j m T k l m \sum_{n} S_{\operatorname{lin}}^{A} S_{j k n}^{B} \approx \sum_{m} T_{i j m} T_{k l m} nSlinASjknBmTijmTklm其中 S A S^A SA S B S^B SB只在一些相位因子上不同
我们可以运用TRG,只是我们需要对 A A A B B B格子追踪他们的张量 T A T^A TA T B T^B TB
注:
这种最优分解的误差与迭代次数无关,并且可以通过增加D来任意减小
误差为 ε ∼ e x p [ − c o n s t × ( l o g D ) 2 ] \varepsilon \sim exp[-const \times(logD)^2] εexp[const×(logD)2](与DMRG中的截断误差相同)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值