前言
人们说起大语言模型,如果不加特别的说明或者场景要求,一般指的是文本类作为输入的大语言模型。
多模态大语言模型,是指输入可以是文本格式,也可是其他格式,例如最常见的其他模态的数据格式有图片,视频,音频,当然也可以是一些姿态、体态等时空状态类数据格式。
最近非常火的SORA模型就是多模态大语言模型,既可以根据提示词生成视频,又可以根据图片生成视频。
文本类的 LLM 的模型架构通常基于 Transformer 模型,而 多模态的 LMM 的模型架构则更加多样化,除了 Transformer 模型之外,可以包括其他模型,如 CNN、RNN 等。
文本类的 LLM 的任务主要适用于NLP相关场景,包括NLU和NLG,自然语言理解类任务和自然语言生成类任务,比如经典的机器翻译、文本摘要、对话问答等任务。
多模态的 LMM 的任务主要适用于多模态融合相关的任务,例如图像理解、图像生成、视频生成等等,大多是跟文本和图片融合相关的任务和场景,例如智慧城市、智能制造、医疗健康等领域。
总结来说,文本类的 LLM 与多模态的 LMM 两类大语言模型在应用场景上侧重点有所不同,两类技术互为补充,几乎能够覆盖所有的场景。
零基础入门学习大模型
还贴心为大家准备好了一系列的资源,都是通过作者花费大量时间在各个平台收集到的,决定把这些AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集