SFT阶段,LLM训练的label是什么?

以下是DeepSeek-R1的回复:

`{       "content": "在监督微调(SFT)阶段,大型语言模型(LLM)的**标签是目标输出文本的token序列**,具体解释如下:\n\n---\n\n### **核心概念**\n1. **输入与输出格式**:\n   - 每个训练样本通常由**输入文本(如用户的问题、指令)**和**目标输出文本(期望的回应或答案)**组成。\n   - 例如,输入为“解释相对论”,标签为“相对论是爱因斯坦提出的时空物理理论...”。\n\n2. **训练过程**:\n   - 输入和输出会被拼接成一个完整序列(如`[输入] 解释相对论 [输出] 相对论是...`)。\n   - 模型基于输入部分(上下文)自回归地生成后续的token,目标是最小化**输出部分的预测误差**。\n\n3. **损失计算**:\n   - **仅对输出部分的token计算损失**,输入部分的token不参与损失计算(通过掩码屏蔽)。\n   - 例如,模型在生成`[输出]`后的每个token时,标签是下一个真实的token(如标准的自回归训练)。\n\n---\n\n### **标签的实质**\n- **标签是目标输出的逐token序列**,而非传统分类任务中的离散类别。\n- 例如,若输出是“今天是晴天”,标签对应为`[\"今\", \"天\", \"是\", \"晴\", \"天\"]`的token序列。\n\n---\n\n### **技术细节**\n- **数据构造**:通常需要添加特殊标记(如`[输入]`、`[输出]`)区分输入与输出部分。\n- **模型调整**:通过微调,模型学习从输入到目标输出的映射关系,适应特定任务(如对话、指令遵循)。\n- **应用场景**:用于提升模型在特定领域(如客服、代码生成)的生成质量与准确性。\n\n---\n\n### **与预训练的区别**\n- **预训练**:无监督学习,标签是语料中随机掩码或后续的token(自监督)。\n- **SFT**:有监督学习,标签是人工标注的高质量目标文本,直接指导模型生成期望内容。\n\n---\n\n### **示例说明**\n- **输入**:`\"翻译为英文:今天天气很好\"`\n- **标签**:`\"The weather is nice today.\"`\n- **训练时**:模型读取输入后,强制生成标签文本,并通过交叉熵损失对齐输出。\n\n---\n\n总结而言,SFT阶段的标签是人工标注的目标文本,通过监督学习让模型学会在给定输入时生成符合预期的响应。这一过程显著提升了模型在特定任务上的表现。",       "reasoning_content": "好的,我现在要仔细思考一下用户的问题:在SFT(监督微调)阶段,LLM(大语言模型)训练的标签是什么?首先,我需要回顾一下SFT的基本概念和流程,确保自己理解正确。\n\n首先,SFT是监督微调的缩写,属于机器学习中的一种微调方法。通常,预训练的语言模型(比如GPT系列)通过大量无标签文本进行自监督学习,学习语言的基本结构和模式。而SFT阶段,则是使用有标签的数据来进一步调整模型,使其适应特定的任务或领域。这时候,数据是有监督的,也就是每个输入样本都有对应的目标输出,也就是标签。\n\n那么问题来了,这里的标签具体指的是什么呢?对于一般的分类任务,标签可能是类别标签,比如情感分析中的正面、负面。但在生成式任务中,比如文本生成,标签可能有所不同。因为LLM通常是生成模型,输入一段文本,然后生成接下来的内容。所以,在SFT阶段,标签可能就是输入文本对应的期望输出文本。\n\n比如,假设有一个对话任务,输入是用户的问题,输出是助理的回答。在SFT阶段,输入可能是一个问题,而标签就是正确的回答。模型根据输入的问题生成回答,然后与标签进行比较,计算损失(比如交叉熵损失),通过反向传播调整模型参数,使得生成的回答更接近标签。\n\n不过,这里可能需要更仔细地考虑模型的输入输出结构。比如,在训练时,是否将问题和回答拼接在一起作为输入,然后让模型预测下一个token?例如,输入是“问题:... 回答:...”,然后在计算损失时,可能只对回答部分计算损失,而忽略问题部分的损失。这时候,标签其实就是回答部分的token序列,而输入是整个上下文。也就是说,模型在训练时,输入是完整的对话(问题+回答),但在计算损失时,只考虑回答部分的预测是否正确,问题部分作为上下文不需要计算损失。\n\n这可能需要具体例子来说明。例如,训练样本是:\n输入文本:“用户:今天的天气怎么样?\\n助理:今天是晴天,气温25摄氏度。”\n在训练时,模型会将整个文本作为输入,但可能只在生成“今天是晴天...”这部分时计算损失。也就是说,标签是紧随上下文后的正确token序列。\n\n另外,还要考虑不同模型的结构差异。比如,GPT这类自回归模型,通常以序列中的前面部分为输入,预测下一个token。因此在SFT中,每个样本可能是一个完整的序列,比如问题和回答的组合,而模型的任务是根据前面的token预测下一个token。这时候,标签其实就是整个序列向右移动一位后的token序列,即每个位置的标签是下一个token。但这里的监督体现在整个回答部分都是已知的,模型需要根据问题生成正确的回答,而损失函数可能只对回答部分计算。\n\n可能需要区分预训练和微调阶段的标签差异。预训练阶段,标签是下一个token,而数据是无监督的,即从原始文本中随机分割出上下文和预测目标。而在SFT阶段,标签是人工标注的正确输出,比如针对特定问题的回答,或者特定任务的输出。\n\n总结一下,可能的思路是:在SFT阶段,模型的输入是任务相关的输入文本(如问题、指令),标签是对应的目标输出文本(如回答、执行结果)。训练时,将输入和输出拼接,模型通过自回归的方式生成输出,损失函数计算输出部分的损失,忽略输入部分的损失。因此,标签其实是输出部分的token序列,而整个训练过程是监督式的,因为有明确的目标输出作为标签。\n\n不过,这里可能存在一些需要注意的细节。例如,是否需要在输入和输出之间添加特殊分隔符?如何处理多轮对话的情况?不同的研究或实践中可能有不同的处理方式,但核心思想是使用有标签的数据,即输入-输出对,来微调模型,使其生成符合预期的输出。\n\n另外,可能还需要考虑数据格式的问题。例如,在Hugging Face的Transformers库中,通常会将输入和目标处理好,比如使用特定的模板或标记来区分输入和输出部分,并在计算损失时屏蔽输入部分的损失。这时候,标签就是输出部分的token ID序列,而输入部分作为上下文不参与损失计算。\n\n可能还需要引用相关文献或资料来支持这个结论,比如经典的SFT方法,如Instruction Tuning中的做法,比如在Fine-Tuned Language Models (FLAN) 或者 OpenAI 的 InstructGPT 中的描述。例如,在InstructGPT的SFT阶段,他们使用人类标注的对话数据,其中输入是用户的指令,输出是助理的回答,作为监督信号来微调模型。\n\n因此,综合以上思考,可以得出结论:在SFT阶段,LLM的标签是每个训练样本中的目标输出文本,即与输入文本相对应的正确答案或期望响应。在训练过程中,模型通过最大化生成目标输出文本的概率来进行监督学习,损失函数通常仅针对输出部分的token计算,以指导模型学习如何根据输入生成正确的输出。"   }   `

reasoning_content

好的,我现在要仔细思考一下用户的问题:在SFT(监督微调)阶段,LLM(大语言模型)训练的标签是什么?首先,我需要回顾一下SFT的基本概念和流程,确保自己理解正确。

首先,SFT是监督微调的缩写,属于机器学习中的一种微调方法。通常,预训练的语言模型(比如GPT系列)通过大量无标签文本进行自监督学习,学习语言的基本结构和模式。而SFT阶段,则是使用有标签的数据来进一步调整模型,使其适应特定的任务或领域。这时候,数据是有监督的,也就是每个输入样本都有对应的目标输出,也就是标签。

那么问题来了,这里的标签具体指的是什么呢?对于一般的分类任务,标签可能是类别标签,比如情感分析中的正面、负面。但在生成式任务中,比如文本生成,标签可能有所不同。因为LLM通常是生成模型,输入一段文本,然后生成接下来的内容。所以,在SFT阶段,标签可能就是输入文本对应的期望输出文本。

比如,假设有一个对话任务,输入是用户的问题,输出是助理的回答。在SFT阶段,输入可能是一个问题,而标签就是正确的回答。模型根据输入的问题生成回答,然后与标签进行比较,计算损失(比如交叉熵损失),通过反向传播调整模型参数,使得生成的回答更接近标签。

不过,这里可能需要更仔细地考虑模型的输入输出结构。比如,在训练时,是否将问题和回答拼接在一起作为输入,然后让模型预测下一个token?例如,输入是“问题:… 回答:…”,然后在计算损失时,可能只对回答部分计算损失,而忽略问题部分的损失。这时候,标签其实就是回答部分的token序列,而输入是整个上下文。也就是说,模型在训练时,输入是完整的对话(问题+回答),但在计算损失时,只考虑回答部分的预测是否正确,问题部分作为上下文不需要计算损失。

这可能需要具体例子来说明。例如,训练样本是: 输入文本:“用户:今天的天气怎么样?\n助理:今天是晴天,气温25摄氏度。” 在训练时,模型会将整个文本作为输入,但可能只在生成“今天是晴天…”这部分时计算损失。也就是说,标签是紧随上下文后的正确token序列。

另外,还要考虑不同模型的结构差异。比如,GPT这类自回归模型,通常以序列中的前面部分为输入,预测下一个token。因此在SFT中,每个样本可能是一个完整的序列,比如问题和回答的组合,而模型的任务是根据前面的token预测下一个token。这时候,标签其实就是整个序列向右移动一位后的token序列,即每个位置的标签是下一个token。但这里的监督体现在整个回答部分都是已知的,模型需要根据问题生成正确的回答,而损失函数可能只对回答部分计算。

可能需要区分预训练和微调阶段的标签差异。预训练阶段,标签是下一个token,而数据是无监督的,即从原始文本中随机分割出上下文和预测目标。而在SFT阶段,标签是人工标注的正确输出,比如针对特定问题的回答,或者特定任务的输出。

总结一下,可能的思路是:在SFT阶段,模型的输入是任务相关的输入文本(如问题、指令),标签是对应的目标输出文本(如回答、执行结果)。训练时,将输入和输出拼接,模型通过自回归的方式生成输出,损失函数计算输出部分的损失,忽略输入部分的损失。因此,标签其实是输出部分的token序列,而整个训练过程是监督式的,因为有明确的目标输出作为标签。

不过,这里可能存在一些需要注意的细节。例如,是否需要在输入和输出之间添加特殊分隔符?如何处理多轮对话的情况?不同的研究或实践中可能有不同的处理方式,但核心思想是使用有标签的数据,即输入-输出对,来微调模型,使其生成符合预期的输出。

另外,可能还需要考虑数据格式的问题。例如,在Hugging Face的Transformers库中,通常会将输入和目标处理好,比如使用特定的模板或标记来区分输入和输出部分,并在计算损失时屏蔽输入部分的损失。这时候,标签就是输出部分的token ID序列,而输入部分作为上下文不参与损失计算。

可能还需要引用相关文献或资料来支持这个结论,比如经典的SFT方法,如Instruction Tuning中的做法,比如在Fine-Tuned Language Models (FLAN) 或者 OpenAI 的 InstructGPT 中的描述。例如,在InstructGPT的SFT阶段,他们使用人类标注的对话数据,其中输入是用户的指令,输出是助理的回答,作为监督信号来微调模型。

因此,综合以上思考,可以得出结论:在SFT阶段,LLM的标签是每个训练样本中的目标输出文本,即与输入文本相对应的正确答案或期望响应。在训练过程中,模型通过最大化生成目标输出文本的概率来进行监督学习,损失函数通常仅针对输出部分的token计算,以指导模型学习如何根据输入生成正确的输出。

content

在监督微调(SFT)阶段,大型语言模型(LLM)的标签是目标输出文本的token序列,具体解释如下:


核心概念

  1. 输入与输出格式
  • 每个训练样本通常由**输入文本(如用户的问题、指令)目标输出文本(期望的回应或答案)**组成。

  • 例如,输入为“解释相对论”,标签为“相对论是爱因斯坦提出的时空物理理论…”。

  1. 训练过程
  • 输入和输出会被拼接成一个完整序列(如[输入] 解释相对论 [输出] 相对论是...)。

  • 模型基于输入部分(上下文)自回归地生成后续的token,目标是最小化输出部分的预测误差

  1. 损失计算
  • 仅对输出部分的token计算损失,输入部分的token不参与损失计算(通过掩码屏蔽)。

  • 例如,模型在生成[输出]后的每个token时,标签是下一个真实的token(如标准的自回归训练)。


标签的实质

  • 标签是目标输出的逐token序列,而非传统分类任务中的离散类别。

  • 例如,若输出是“今天是晴天”,标签对应为["今", "天", "是", "晴", "天"]的token序列。


技术细节

  • 数据构造:通常需要添加特殊标记(如[输入][输出])区分输入与输出部分。

  • 模型调整:通过微调,模型学习从输入到目标输出的映射关系,适应特定任务(如对话、指令遵循)。

  • 应用场景:用于提升模型在特定领域(如客服、代码生成)的生成质量与准确性。


与预训练的区别

  • 预训练:无监督学习,标签是语料中随机掩码或后续的token(自监督)。

  • SFT:有监督学习,标签是人工标注的高质量目标文本,直接指导模型生成期望内容。


示例说明

  • 输入"翻译为英文:今天天气很好"

  • 标签"The weather is nice today."

  • 训练时:模型读取输入后,强制生成标签文本,并通过交叉熵损失对齐输出。


总结而言,SFT阶段的标签是人工标注的目标文本,通过监督学习让模型学会在给定输入时生成符合预期的响应。这一过程显著提升了模型在特定任务上的表现。

参考文献

  • https://arxiv.org/pdf/2210.11416

  • https://www.youtube.com/watch?v=YT3VSlDjrVU

  • https://towardsdatascience.com/to-mask-or-not-to-mask-the-effect-of-prompt-tokens-on-instruction-tuning-016f85fd67f4/

  • https://medium.com/@lmpo/an-overview-instruction-tuning-for-llms-440228e7edab

  • https://mlops.community/basics-of-instruction-tuning-with-olmo-1b/

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

本文转自 https://mp.weixin.qq.com/s/iXf-OoT92YbIgGT0HHQwhQ,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值