文章目录
大模型开发 - 一文搞懂 Function Calling(函数调用)
本文将从_函数调用的本质、函数调用的原理、函数调用的想象空间_三个方面,带您一文搞懂函数调用 Function Calling。
函数调用
一、函数调用的本质
***自然语言接口(NLI):***Natural Language Interface,自然语言连接一切。
自然语言接口(NLI)
-
NLI的定义
自然语言接口(NLI)允许用户通过日常语言与软件和设备交互,无需特定命令或语法。
-
用户界面与API的NLI化
为使多个软件和设备能协同工作,用户界面和API均需支持自然语言交互,简化复杂指令的执行。
-
实现NLI的两种思路
强大入口AI:依赖高度智能的AI拆解和分发用户任务。
广播式指令:AI将指令广播给所有软件,由它们自主决策是否及如何响应。
大模型的两大缺陷:大模型受限于计算资源和训练时间,导致信息滞后,并且其基于统计规律的回答缺乏真正的逻辑推理能力。
大模型的两大缺陷
-
问题一:没有最新信息:
-
- 大模型的训练需要大量的计算资源和时间,因此它们的知识库通常是在某个时间点之前的数据集上训练的。**例如,GPT-3.5和GPT-4的知识截至2021年9月。**这意味着它们无法提供此后的新信息或事件。为保持时效性,需定期重训模型,但成本高昂且耗时,导致大模型难以及时跟上信息更新。
-
问题二:没有真逻辑:
-
- **大模型生成的文本和回答主要基于训练数据的统计规律,而非严格的逻辑推理或形式化证明。**因此,在处理复杂或需深入逻辑推理的问题时,它们可能产生看似合理但实际不准确的回答。此外,大模型通过预测给定上下文中的下一个词来生成文本,可能受训练数据中的偏见和错误影响,从而削弱逻辑严谨性。
二、函数调用的原理
函数调用(Function Calling):函数调用使您能够更可靠地从模型中获取结构化数据。
**********
函数调用(Function Calling)
-
第一步:创建通过调用外部 API 来回答问题的助手
-
- 定义函数,如**
get_current_weather(location: string, unit: 'celsius' | 'fahrenheit')
**
- 定义函数,如**
定义函数:get_current_weather
-
第二步:将自然语言转换为 API 调用
-
- **转换“谁是我的主要客户?”****
get_customers(min_revenue: int, created_before: string, limit: int)
**调用您的内部 API。
- **转换“谁是我的主要客户?”****
**调用内部API函数:**get_customers******
**提取数据函数:**extract_data******
函数调用的机制*****:在大语言模型中,函数调用通常涉及将用户的自然语言请求转换为可执行的函数调用,并生成符合预定义函数签名的结构化输出,如JSON对象。*****
函数调用的机制
函数调用机制的主要步骤:
- 一、用户输入:用户通过自然语言向模型提出问题或请求。这些问题或请求可能需要调用外部函数来获取答案或执行某些操作。
- 二、模型解析:模型接收到用户输入后,会解析并理解输入内容。模型会根据其训练数据和算法判断是否需要调用函数,并确定要调用的函数及其参数。
- 三、生成函数调用:如果模型确定需要调用函数,它会生成一个包含函数调用所需参数的结构化输出。这通常是一个JSON对象,其中包含函数名、参数列表等信息。这个JSON对象是以字符串形式存在的,需要在实际调用函数之前进行解析。
- 四、函数调用执行:在您的代码中,您需要解析这个字符串化的JSON对象,将其转换为有效的数据结构(如字典或对象),并使用这些参数调用相应的函数。这个过程是在您的代码环境中完成的,而不是在模型内部。模型只是提供了调用函数所需的参数和信息。
- 五、处理函数结果:函数调用执行完成后,您需要将函数的结果返回给模型。这通常通过将结果附加到模型中再次调用模型来实现。模型会接收并处理这些结果,然后生成一个自然语言回复给用户,总结或解释函数调用的结果。
三、函数调用的想象空间
************函数调用的想象空间**************
用户对着微信说
-
步骤一:了解微信API或第三方库:
-
- 研究微信官方文档,了解是否有提供发送消息的API(通常情况下,个人用户无法直接访问这样的API)。
- 查找是否有可用的第三方库或工具,这些库或工具可能提供了访问微信某些功能的接口(但使用这些工具存在账号被封禁的风险)。
-
步骤二:登录微信:
-
- 使用选定的库或工具提供的登录方法登录微信账号。这通常涉及扫描二维码或使用其他认证机制。
-
步骤三:获取好友列表:
-
- 一旦登录,使用相关API或库函数来获取微信好友列表。
-
步骤四:筛选女性好友:
-
- 遍历好友列表,根据好友的性别信息筛选出女性好友。性别信息通常可以在好友列表的数据中获取。
-
步骤五:编写拜年信息:
-
- 编写一条或多条情真意切且带有小幽默的拜年信息模板。
-
步骤六:发送消息:
-
- 遍历筛选出的女性好友列表,并使用API或库函数向每个女性好友发送拜年信息。确保遵守发送频率限制,以避免被微信检测为滥用行为。
-
步骤七:退出登录:
-
- 发送完所有消息后,使用API或库函数安全地退出微信登录。
************微信给女性朋友拜年**************
用户对着富途牛牛说**:*************人工智能相关股票,市盈率最低的是哪几个?最近交易量如何?都有哪些机构持有?***********
-
步骤一:准备API接口和认证信息
-
- 确定用于获取股票信息的API接口URL。
- 获取并准备好API密钥或其他认证信息。
-
步骤二:定义函数以获取市盈率最低的人工智能股票
-
- 编写一个函数,该函数接受API接口URL和API密钥作为参数。
- 在函数内部,构造请求参数,指定股票分类为人工智能,按市盈率升序排列,并限制返回结果的数量。
- 发送HTTP GET请求到API接口,并传入构造好的请求参数和API密钥。
- 检查响应的状态码,确保请求成功。
- 解析响应内容,提取市盈率最低的股票列表信息。
- 返回市盈率最低的股票列表。
-
步骤三:定义函数以获取股票的最近交易量
-
- 编写一个函数,该函数接受API接口URL、API密钥和股票代码作为参数。
- 构造特定于股票代码的API请求URL。
- 发送HTTP GET请求到构造好的URL,并传入API密钥。
- 检查响应的状态码,确保请求成功。
- 解析响应内容,提取交易量信息。
- 返回交易量信息。
-
步骤四:定义函数以获取股票的机构持有者信息
-
- 编写一个函数,该函数接受API接口URL、API密钥和股票代码作为参数。
- 构造特定于股票代码的API请求URL。
- 发送HTTP GET请求到构造好的URL,并传入API密钥。
- 检查响应的状态码,确保请求成功。
- 解析响应内容,提取机构持有者列表及其持股份额等信息。
- 返回机构持有者信息。
-
步骤五:调用函数并处理结果
-
- 调用步骤3中定义的函数,获取该股票的最近交易量信息。
- 调用步骤4中定义的函数,获取该股票的机构持有者信息。
- 调用步骤2中定义的函数,获取市盈率最低的人工智能股票列表。
- 遍历股票列表,对于每只股票:
- 打印或存储获取到的信息,包括股票代码、市盈率、最近交易量和机构持有者列表。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】