Toxicity Prediction in Pelvic Radiotherapy Using Multiple Instance Learning and Cascaded Attention Layers文献笔记
基本信息
目的:分析接受盆腔放疗的患者的毒性关系(探索患者的剂量分布和CT图像以及肠急症毒性严重程度之间的关系,以预测盆腔放疗患者≥2级肠急症毒性)
方法:基于多实例学习的卷积神经网络; 提出了一种新的机制,用于独立地分离对空间和剂量/成像特征的注意力,以便更好地解释毒性的分布情况。
数据集
横断面研究队列包括315例2009年至2014年间在英国利兹癌症中心接受3d适形放疗(n=307)或强度调制放疗(n=8)治疗的肛门、直肠、子宫颈癌和子宫内膜癌患者。 数据集包括每个患者的放疗剂量分布、CT扫描和结构集文件。所有患者均按照RTOG指南进行肠腔结构轮廓(“肠袋”)
采用经验证的欧洲癌症研究与治疗组织(EORTC)生活质量问卷对患者报告的肠急症进行评估;“当你想要拉肚子的时候,是不是一定要急着上厕所?”回答使用的是顺序刻度:0:“一点也不”;1:“一点点”;2:“相当多”;3:“very much”。
将患者分为两类;中度/重度毒性≥2级(85例),无/轻度毒性< 2级(164例)。为简单起见,我们将≥2级的患者称为肠急症患者,将< 2级的患者称为无肠急症毒性患者。
数据预处理
对于168名患者,由于不同的治疗计划系统,每个患者有多个剂量分布,每个剂量分布代表用于治疗的2-7个放射束中的一个。我们将这些光束剂量分布合并为单一剂量分布,以计算个体患者的全部治疗。由于所有剂量分布都具有相同的坐标系,因此组合可以简单地通过将所有单剂量处理相加来计算。对CT和剂量图像进行线性插值空间重采样,体素尺寸为0.97 mm × 0.97 mm,体素厚度为5 mm。 将每个输入数据分成维度为[6,32,32]体素的更小的立方体。
具体方法
该网络由两个输入编码器组成,每个编码器分别从CT和剂量分布中提取重要特征。
1、MIL卷积神经网络
作者们使用MIL并将每个输入(CT和剂量)分开成更小的三维立方体, 这大大减少了时间和内存的复杂性,并提供了一个利用这两种模式的模型。
2.级联注意模块与毒性的解释
为了增加可解释性,本文提出了一种新的两个注意力模块的级联协同作用,以解开特征和成像空间上的注意力权重。对于每个患者,网络生成两个毒性风险图:一种是强调总体高风险区域,在这些区域中,患者的声压增益和接受的剂量的组合驱动毒性风险,另一种是解释CT和剂量如何触发网络的决策。
(1)输入:包:,其中K代表一个包里有K个实例,每个实例为一个三维张量
(2)将输入通过实例级别的编码器,其输出为,其输出就是从输入i的立方体k中提取的特征向量
(3)计算每个通道的注意力权值(第一个注意力模块)
(4)计算立方体k提取的总特征向量为::
(5)然后,通过第二个注意力模块计算注意力权值:
对应的特征向量就为:
(6)分类:
(7)损失
实验
实验设置
编码器由两个3D卷积层组成,每个层都有maxpooling和batchnorm层。两个卷积层分别使用30和50个卷积滤波器,核大小为(2,3,3)。采用学习率为1e−4的Adam优化。我们为两个注意模块设置p, d = 512
数据集划分
训练集和测试集:随机选择20例有肠急症患者和20例无肠急症患者作为测试集,其余(209例)用于训练。
验证集:20名患者(约占训练数据集的10%)
训练集的数据增强:随机对65例毒性患者施加平均值为零、标准差为0.1的加性高斯噪声和每轴5 mm sigma的平滑递归高斯噪声。两种滤波器均采用SimpleITK Python工具箱(Version 2.1.1)中的滤波器进行三维图像分析。在原始分辨率下(数据预处理前)对CT和剂量分布进行增强。
值得注意的是,为了减少复杂度,在训练前,作者先使用迁移学习来分别学习两个编码器。