题目:
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums
representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [2,3,2] Output: 3 Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
Example 2:
Input: nums = [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4.
Example 3:
Input: nums = [1,2,3] Output: 3
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
思路:
本题是198. House Robber的衍生题,只是相当于头尾相连,形成了一个环。分开考虑即可,分为偷第一家,那么就不能偷最后一家;不偷第一家,那么就可以偷最后一家。将两种情况分开,每种都按照198. House Robber来计算,获得两种情况里的最大值即为答案。一般遇到环的题目,要么是double环,要么就是分开考虑。这题中double环只会把问题更复杂,而分开考虑一旦想到的话,这题就很简单了。
代码:
class Solution {
public:
int rob(vector<int> nums) {
int n = nums.size();
if (n == 1) return nums[0];
int first = rob(nums, 0, n - 2);
int second = rob(nums, 1, n - 1);
return max(first, second);
}
private:
int rob(vector<int> nums, int s, int e) {
if (s == e) return nums[s];
if (e - s == 1) return max(nums[s], nums[e]);
int n = nums.size();
vector<int> f(n);
f[s] = nums[s];
f[s + 1] = max(nums[s], nums[s + 1]);
for (int i = s + 2; i <= e; i++) {
f[i] = max(f[i - 1], f[i - 2] + nums[i]);
}
return f[e];
}
};