【离散数学】 SEU - 03 - 2021/03/08 - Predicates and Quantifiers

Discrete Mathematics and its Applications (8th Edition)
2021/03/08 - Predicates and Quantifiers



1 The Foundations: Logic and Proofs

1.3 Propositional Equivalences

Last time continue:
Conjunctive Normal Form is similar to Disjunctive Normal Form.
But now we use a different formula:
A ∨ ( B ∧ C ) ≡ ( A ∨ B ) ∧ ( A ∨ C ) A\vee(B\wedge C)\equiv(A\vee B)\wedge(A\vee C) A(BC)(AB)(AC)

1.3.5 Propositional Satisfiability

If there is an assignment of truth values to its variables that make it true.

Sudoku

Sodoku

1.4 Predicates and Quantifiers

1.4.2 Predicates

1.4.3 Quantifiers

The universal quantifier ( ∀ \forall )

For all

The existential quantifier ( ∃ \exists )

exists

The uniqueness quantifier ( ∃ ! \exists ! ! or ∃ 1 \exists_1 1)

one and only one

Tip: The uniqueness quantifier is not really needed such as P ( x ) P(x) P(x) can be expressed in this way:
∃ x   ( P ( x ) ∧ ∀ y ( P ( x ) → y = x ) ) \exists x\ (P(x)\wedge\forall y(P(x)\rightarrow y=x)) x (P(x)y(P(x)y=x))

1.4.4 Quantifiers over finite domains

When the domain is finite, such as D = { a 1 , ⋯   , a n } D=\{a_1,\cdots, a_n\} D={a1,,an}
∀ x   P ( x ) ≡ P ( a 1 ) ∧ ⋯ ∧ P ( a n ) \forall x\ P(x)\equiv P(a_1)\wedge\cdots\wedge P(a_n) x P(x)P(a1)P(an)
∃ x   P ( x ) ≡ P ( a 1 ) ∨ ⋯ ∨ P ( a n ) \exists x\ P(x)\equiv P(a_1)\vee\cdots\vee P(a_n) x P(x)P(a1)P(an)

Assignment

SEU - Assignment 3 - 2021/03/08


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值