Discrete Mathematics and its Applications (8th Edition)
2021/03/08 - Predicates and Quantifiers
Contents
1 The Foundations: Logic and Proofs
1.3 Propositional Equivalences
Last time continue:
Conjunctive Normal Form is similar to Disjunctive Normal Form.
But now we use a different formula:
A
∨
(
B
∧
C
)
≡
(
A
∨
B
)
∧
(
A
∨
C
)
A\vee(B\wedge C)\equiv(A\vee B)\wedge(A\vee C)
A∨(B∧C)≡(A∨B)∧(A∨C)
1.3.5 Propositional Satisfiability
If there is an assignment of truth values to its variables that make it true.
Sudoku
1.4 Predicates and Quantifiers
1.4.2 Predicates
1.4.3 Quantifiers
The universal quantifier ( ∀ \forall ∀)
For all
The existential quantifier ( ∃ \exists ∃)
exists
The uniqueness quantifier ( ∃ ! \exists ! ∃! or ∃ 1 \exists_1 ∃1)
one and only one
Tip: The uniqueness quantifier is not really needed such as P ( x ) P(x) P(x) can be expressed in this way:
∃ x ( P ( x ) ∧ ∀ y ( P ( x ) → y = x ) ) \exists x\ (P(x)\wedge\forall y(P(x)\rightarrow y=x)) ∃x (P(x)∧∀y(P(x)→y=x))
1.4.4 Quantifiers over finite domains
When the domain is finite, such as
D
=
{
a
1
,
⋯
,
a
n
}
D=\{a_1,\cdots, a_n\}
D={a1,⋯,an}
∀
x
P
(
x
)
≡
P
(
a
1
)
∧
⋯
∧
P
(
a
n
)
\forall x\ P(x)\equiv P(a_1)\wedge\cdots\wedge P(a_n)
∀x P(x)≡P(a1)∧⋯∧P(an)
∃
x
P
(
x
)
≡
P
(
a
1
)
∨
⋯
∨
P
(
a
n
)
\exists x\ P(x)\equiv P(a_1)\vee\cdots\vee P(a_n)
∃x P(x)≡P(a1)∨⋯∨P(an)
Assignment
SEU - Assignment 3 - 2021/03/08
ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.
See also
Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage