Discrete Mathematics and its Applications (8th Edition)
2021/03/26 - Introduction to Proofs
1 The Foundations: Logic and Proofs
1.7 Introduction to Proofs
1.7.2 Some Terminology
A theorem is a statement that can be shown to be true using:
- definitions
- other theorems
- axioms (statements which are given as true)
- rules of inference
A lemma is a ‘helping theorem’ or a result which is needed to prove a theorem.
A corollary is a result which follows directly from a theorem.
Less important theorems are sometimes called propositions.
A conjecture is a statement that is being proposed to be true.
1.7.5 Direct Proofs
1.7.6 Proof by Contraposition
1.7.7 Proof by Contradiction
∀ x ( A ( x ) → B ( x ) ) → ( ∀ x A ( x ) → ∀ x B ( x ) ) ≡ T \forall x\ (A(x)\rightarrow B(x))\rightarrow(\forall x\ A(x)\rightarrow\forall x\ B(x))\equiv \mathbf{T} ∀x (A(x)→B(x))→(∀x A(x)→∀x B(x))≡T
Solution:
∀ x