【离散数学】 SEU - 08 - 2021/03/26 - Introduction to Proofs

本文介绍了《离散数学及其应用》第八版中关于逻辑与证明的基础概念,包括定理、引理、推论的定义,以及直接证明、逆否法和矛盾法等证明方法。重点讲解了如何通过定义、已有定理、公理和推理规则来证明陈述。适合初学者理解证明过程和构造技术。
摘要由CSDN通过智能技术生成

Discrete Mathematics and its Applications (8th Edition)
2021/03/26 - Introduction to Proofs


1 The Foundations: Logic and Proofs

1.7 Introduction to Proofs

1.7.2 Some Terminology

A theorem is a statement that can be shown to be true using:

  • definitions
  • other theorems
  • axioms (statements which are given as true)
  • rules of inference

A lemma is a ‘helping theorem’ or a result which is needed to prove a theorem.

A corollary is a result which follows directly from a theorem.

Less important theorems are sometimes called propositions.

A conjecture is a statement that is being proposed to be true.

1.7.5 Direct Proofs

1.7.6 Proof by Contraposition

1.7.7 Proof by Contradiction

∀ x   ( A ( x ) → B ( x ) ) → ( ∀ x   A ( x ) → ∀ x   B ( x ) ) ≡ T \forall x\ (A(x)\rightarrow B(x))\rightarrow(\forall x\ A(x)\rightarrow\forall x\ B(x))\equiv \mathbf{T} x (A(x)B(x))(x A(x)x B(x))T

Solution:
∀ x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值