在深度学习中,卷积(Convolution)和采样(Sampling)是两个不同的概念,它们在深度学习和图像处理中有着不同的应用和目的:
卷积(Convolution):
1、定义:卷积是一种数学运算,它在信号处理和图像处理中用于提取特征或应用滤波器效果。
卷积操作通常指的是将卷积核(或滤波器)滑动遍历输入数据(如图像或特征图),并在每个位置计算卷积核与输入数据的点积,从而生成输出特征图。
2、目的:提取输入数据的局部特征,如边缘、纹理等。它能够捕捉到输入数据的局部相关性,并生成新的特征图,这些特征图可以用于后续的处理或分类任务。
卷积操作涉及几个参数,卷积核的大小、步长(stride)、填充(padding)和卷积核的数量。这些参数影响输出特征图的尺寸和特征提取的方式。
如下图
一次卷积运算指的是:当我们有一个过滤器(黄色矩阵块,又称卷积核,也是矩阵);移动卷积核,将这个方块对应要处理的输入矩阵的一部分,位置一一对应相乘,然后把结果再相加得到一个数;
上面这幅图是对一个5*5的矩阵进行3*3的矩阵的卷积;
那么就从左上角到右下角,生