卷积和采样,上采样(UpSampling) 和 下采样(DownSampling)及其相关概念的简单介绍

在深度学习中,卷积(Convolution)和采样(Sampling)是两个不同的概念,它们在深度学习和图像处理中有着不同的应用和目的:

卷积(Convolution):

1、定义:卷积是一种数学运算,它在信号处理和图像处理中用于提取特征或应用滤波器效果。

卷积操作通常指的是将卷积核(或滤波器)滑动遍历输入数据(如图像或特征图),并在每个位置计算卷积核与输入数据的点积,从而生成输出特征图。

2、目的:提取输入数据的局部特征,如边缘、纹理等。它能够捕捉到输入数据的局部相关性,并生成新的特征图,这些特征图可以用于后续的处理或分类任务。

卷积操作涉及几个参数,卷积核的大小、步长(stride)、填充(padding)和卷积核的数量。这些参数影响输出特征图的尺寸和特征提取的方式。

		如下图

一次卷积运算指的是:当我们有一个过滤器(黄色矩阵块,又称卷积核,也是矩阵);移动卷积核,将这个方块对应要处理的输入矩阵的一部分,位置一一对应相乘,然后把结果再相加得到一个数;

在这里插入图片描述

	上面这幅图是对一个5*5的矩阵进行3*3的矩阵的卷积;

那么就从左上角到右下角,生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值