python用matplotlib 用matshow()绘制矩阵,绘制矩阵图

本文介绍了如何使用matplotlib库中的plt.cm模块为矩阵设置不同颜色映射,包括红、蓝、灰等,并展示了如何添加colorbar以增强视觉效果。通过实例演示了随机矩阵和特定矩阵的展示技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  本次演示用jupter notebook.

一、plt.cm绘制

    示例一:设置0-100的10*10的矩阵

代码1:

import matplotlib.pyplot as plt
import numpy as np
A = np.arange(0, 100).reshape(10, 10)
plt.matshow(mat, cmap=plt.cm.Reds)#这里设置颜色为红色,也可以设置其他颜色
plt.title("matrix A")
plt.show()

得到如下结果图1:

     注:对于矩阵的颜色设置还有很多,改变 plt.matshow(mat, cmap=plt.cm.Reds)中的Reds可根据自己喜好设置其他颜色,以下给出其他几种颜色。

代码2:(设置颜色为蓝色)

import matplotlib.pyplot as plt
import numpy as np
A = np.arange(0, 100).reshape(10, 10)
plt.matshow(mat, cmap=plt.cm.Blues)
plt.title("matrix A")
plt.show()

结果2:

 代码3:(设置颜色灰色)

import matplotlib.pyplot as plt
import numpy as np
A = np.arange(0, 100).reshape(10, 10)
plt.matshow(mat, cmap=plt.cm.gray)
plt.title("matrix A")
plt.show()

结果3:

   示例二:随机设置矩阵 A

代码4:

import matplotlib.pyplot as plt
import numpy as np
A=np.array([[4,3,2,4],[5,4,7,8],[9,16,11,5],[13,3,4,16],[6,18,1,20]])
plt.matshow(X, cmap=plt.cm.Reds)
plt.title("matrix A")
plt.show()

结果4:

    注:从图中可以看出,不同的数值大小红色的深度是不一样的,数值越大红色越深,这里同样可以根据自己喜好设置不同的颜色,我就不再过多展示 。

二、用plt.colorbar绘制矩阵图

代码5:

import numpy as np
import matplotlib.pyplot as plt
X=np.array([[0,3,2,4],[5,4,7,8],[9,16,8,5],[13,3,4,16],[6,18,1,20]])
A = np.arange(0, 100).reshape(10, 10)
ax = plt.matshow(X)
plt.colorbar(ax.colorbar, fraction=0.025)
plt.title("matrix X");
plt.show()

结果5:

本人学习过程中的一些笔记,文中可能有些不足,欢迎大家讨论和指正。 

### 回答1: plt.matshow函数可以用来显示矩阵图像,要调整图片大小,可以使用figsize参数来设置图片大小。例如: ``` plt.matshow(matrix, figsize=(width, height)) ``` 其中,width和height分别为图片的宽度和高度,单位为英寸。 此外,还可以使用dpi参数来设置图片的分辨率,例如: ``` plt.matshow(matrix, figsize=(width, height), dpi=dpi) ``` 其中,dpi表示每英寸的像素数。 最后,调用plt.show()函数即可显示图片。 ### 回答2: 在使用plt.matshow绘制图片时,可以通过调整图像的大小来满足需求。具体有以下几种方法: 1. 使用plt.figure()函数创建一个新的图像对象,并指定图像大小,然后再使用plt.matshow绘制图像。例如: ```python import matplotlib.pyplot as plt import numpy as np data = np.random.rand(10, 10) plt.figure(figsize=(6, 6)) # 设置图像大小为6x6英寸 plt.matshow(data) plt.show() ``` 2. 使用plt.subplots()函数创建一个包含子图的图像对象,并指定子图的大小。然后再使用plt.matshow绘制子图。例如: ```python import matplotlib.pyplot as plt import numpy as np data = np.random.rand(10, 10) fig, ax = plt.subplots(figsize=(6, 6)) # 创建一个大小为6x6英寸的子图 ax.matshow(data) plt.show() ``` 3. 使用plt.gcf()函数获取当前的图像对象,并通过设置图像对象的大小属性来调整图像的大小。例如: ```python import matplotlib.pyplot as plt import numpy as np data = np.random.rand(10, 10) plt.matshow(data) plt.gcf().set_size_inches(6, 6) # 设置图像大小为6x6英寸 plt.show() ``` 通过以上方法,我们可以非常灵活地调整plt.matshow绘制的图片的大小来适应不同的需求。 ### 回答3: 在使用plt.matshow函数绘制矩阵时,可以通过调整plt.figure函数的figsize参数来调整图片的大小。 使用plt.figure函数创建一个新的图像窗口,并将figsize参数设置为所需的大小,例如plt.figure(figsize=(width,height))。其中,width和height分别表示图片的宽度和高度,单位可以是英寸(inch)或者像素(pixel)。 调整figsize的数值可以改变图片的大小,使其符合要求。例如,若想将图片的宽度调整为10英寸,高度调整为5英寸,可以写成plt.figure(figsize=(10,5))。 在调用plt.matshow函数时,将其作为一个子图绘制在之前创建的图像窗口中,即plt.matshow(matrix)。 最后使用plt.show函数显示图像窗口。 以下是一个示例代码: import matplotlib.pyplot as plt import numpy as np # 创建一个大小为10x5的矩阵 matrix = np.random.random((10,5)) # 创建图像窗口,大小为10x5英寸 plt.figure(figsize=(10,5)) # 绘制矩阵 plt.matshow(matrix) # 显示图像窗口 plt.show() 通过以上的代码,可以生成一个大小为10x5英寸的热图。可以根据实际需要调整figsize的数值,以便得到所需要的图片大小。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值