知识图谱论文阅读(二十三)【SIGIR2020】Multi-behavior Recommendation with Graph Convolutional Networks

MBGCN是一种利用图卷积网络处理多行为推荐问题的模型。它通过构建统一的异构图来表示用户和物品的多类型交互,同时考虑了行为的内在强度和稀疏性。模型包含用户-物品传播层学习行为影响,物品-物品传播层捕获行为语义,以及联合预测模块。通过传播和聚合机制,MBGCN能够从多行为数据中学习到更丰富的用户和物品表示,从而提高推荐系统的性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述

题目: Multi-behavior Recommendation with Graph Convolutional Networks
论文地址:
论文代码:

想法

将相同行为的交互方式进行了聚合来计算user Embedding和item Embedding

创新

模型要做的事情就是user-item传播层学习行为影响力度,item-item传播层去捕获行为语义

摘要

过去的问题:

传统的推荐模型仅仅利用一种用户-物品的交互数据,如购买行为,因而综述遭受数据稀疏和冷启动的问题,但是该用户可能没有购买,只是浏览、点击和收藏等这些隐藏信息

早期的推荐系统并没有考虑到这些隐藏信息的权重信息,也就忽略了这些数据中隐藏的行为语义。

我们:

我们的工作中创造了一个统一的图来表示多行为的数据;

并且提出了我们的模型叫做**MBGCN(**题目),使用GCN的层层传播语义的功能

2 PROBLEM FORMULATION

在在线信息系统的真实场景中,用户可以通过点击、收集、购买、分享等多种方式与平台提供的物品进行交互。在各种类型的用户项目交互中,总有一种类型直接决定着平台的利润

例如,电子商务推荐系统一直是针对购买行为设计的,App推荐系统是针对下载行为设计的

但是单一行为的方式往往效果不好,而且缺乏数据。

在这项工作中,我们的目标是利用其他类型的反馈设计一个推荐模型的目标行为

在这里插入图片描述

约定一下:
假定行为的数量 T T T

交互矩阵 Y t Y^t Yt表明了和item有没有交互

所有的行为矩阵可以表示为 { Y 1 , Y 2 , . . . , Y T } \left \{ Y^1, Y^2,...,Y^T \right \} {Y1,Y2,...,YT},其中 { Y 1 , Y 2 , . . . , Y T − 1 } \left \{ Y^1, Y^2,...,Y^{T-1} \right \} {Y1,Y2,...,YT1}表示为辅助行为,而 Y T Y^T YT表示为目标行为。
在这里插入图片描述

注意,对行为的时间顺序或强度顺序没有限制。换句话说,行为 t − 1 t-1 t1并没有 t t t之前发生,并且 y u i t − 1 y_{ui}^{t-1} yuit1 y u i t y_{ui}^{t} yuit并没有反应的更强或者更弱。那么多行为推荐的任务可以表述为:

Input: user-item的交互数据 T T T种类型的行为

Output: user u在T-th行为下和item i交互的概率

3 METHODOLOGY

我们的模型有四个重要的组成部分:
1)一个共享层,它为用户和项目嵌入提供初始化;
2)user-item传播层,学习每个行为的强度,同时提取基于多行为的用户-物品交互的协同过滤信号;
3)item-item传播层,根据行为类型细化项目之间的特殊关系,即行为语义;
4)联合预测模块。

在这里插入图片描述

3.1 Unified Heterogeneous Graph

输入交互数据用无向图表示 G = ( V , E ) \mathrm{G=(V,E)} G=(V,E),其中节点由user和item组成。

E \mathrm{E} E中的边包含了不同行为的不同的user-item的交互边,名字为 ( u , i ) t (u, i)_t (u,i)t, t ∈ N r t\in N_r tNr,其中 N r N_r Nr所有行为类型的集合

同时,在items之间,一些meta-paths将会基于用户的协同行为(多个用户都购买了XX)建立。

比如iphone和AirPods,很多人都同时购买了,那么item-purchase-user-purchase-item的元路径将会被建立。

也因此,元路径的类型行为类型数量是一样的!

3.2 Shared Embedding Layer

p i ( 0 ) ∈ R d  and  q j ( 0 ) ∈ R d p_{i}^{(0)} \in \mathcal{R}^{d} \text { and } q_{j}^{(0)} \in \mathcal{R}^{d} pi(0)Rd and qj(0)Rd是user和item的嵌入。

之后可以将user和item的嵌入向量可以用嵌入矩阵表示:
在这里插入图片描述

同时我们使用one-hot+矩阵乘法获得某个用户和item的向量
在这里插入图片描述

其中 I D k U ID_{k}^U IDkU I D j V ID_{j}^V IDjV分别是用户 u k u_k uk i j i_j ij的one-hot向量。

3.3 Behavior-aware User-Item Propagation

为了捕获基于多行为的CF信号,我们在用户和项目之间建立了一个消息传递体系结构。

在这里插入图片描述
相同的颜色的线表示的是相同的行为!!!

3.3.1 User Embedding Propagation.

我们的主要想法是根据行为类型,通过两个关键因素:行为内在强度交互稀疏性来考虑物品对用户偏好的不同影响。

User Behavior Propagation Weight Calculation:
由于不同的行为对目标行为的贡献不同,我们为每个行为分配权重,也就是 w t w_t wt为了行为 t t t

为了融合行为重要性和行为稀疏性,我们为用户 u 定义了特定行为 t 的传播权值 α u t \alpha _{ut} αut,如下所示:
在这里插入图片描述

其中 w t w_t wt对于所有用户来说是一样的。

n u t n_{ut} nut是被user u操作的行为 t 的数量, 这取决于用户。 ∑ m ∈ N r α u m \sum_{m \in N_{r}} \alpha_{u m} mNrαum是所有用户u的交互

w w w更大的行为将会比更小的行为重要, ∑ t ∈ N r α u t = 1 \sum_{t \in N_{r}} \alpha_{u t}=1 tNrαut=1,而且该权重是系统自动学习到的。

Neighbour Item Aggregation Based on behavior.
对于每个用户来说,不同的行为对目标行为的贡献是不同的,但直觉上,相同行为下交互的物品反映了用户相似的偏好强度

因此,将与用户具有相同行为交互的项聚合在一起,以获得每个行为的一个嵌入 p u , t ( l ) p_{u,t}^{(l)} pu,t(l),该式子表示 对于在行为 t 下的用户 u 的表示:
在这里插入图片描述

N t I ( u ) N_t^I(u) NtI(u)是用户u在行为t下的交互的items!

q i ( l ) q_i^{(l)} qi(l)是item i的在层l的嵌入!

聚合函数可以是一个函数,如简单的均值函数,抽样的均值函数,最大池化等等。这里我们使用简单的中值函数

p u , t ( l ) p_{u,t}^{(l)} pu,t(l)用户 u 在行为 t 下在 l l l-th 层的聚合嵌入。

Behavior-level Item Propagation for User(就是上面图的上半部分)

我们根据权重 α u t \alpha_{ut} αut对嵌入在一起的邻居项聚合求和,然后通过一个编码器矩阵得到user u的最终邻居项聚合。我们采用无激活函数的图神经网络来细化基于多行为的信息:
在这里插入图片描述
α u t \alpha_{ut} αut它既取决于行为显著性,也取决于每种行为下的用户交互量。

3.3.2 Item Embedding Propagation

上面的item-to-user是根据用户的行为然后赋予item权重得到的用户特征。

这里的user-to-item中,item的特性是静态的,所以不管行为类型,假设不同用户对同一项内容的贡献是相同的。

下面就是聚合用户行为后的!
在这里插入图片描述
虽然在user-to-item的传播中没有考虑行为类型,但不能说多行为不能用于物品特征学习。

事实上,item相关性或者换句话说,行为语义可以从item-to-item的多行为数据中学习

3.4 Item-Relevance Aware Item-Item Propagation

在这里插入图片描述

但是前面提到了,需要解决的第二个问题是捕捉items之间的关系,所以item还需要进行一次传播,得到额外的一个在不同行为下的item表示。即被同一个用户都交互了的物品之间存在有特殊的连接

在这里插入图片描述
这个操作也可以参考上图,目的是求出item i 的下一层嵌入; 即t1行为之间进行聚合,t2行为之间进行聚合就行。

上图是t1行为的,下图是t2行为下的!

3.5 Joint Prediction:

得到各层的表示直接拼接就行:

在这里插入图片描述

然后可以做两个预测任务User-based CF ScoringItem-based CF Scoring

3.5.1 User-based CF Scoring

根据所得到的用户和物品的embedding,做简单的内积。
在这里插入图片描述

3.5.2 Item-based CF Scoring

计算与用户u交互的所有物品们与目标物品 i i i的相关性分数(两个item之间被某用户有相同的行为如都购买了会影响到分数)。
在这里插入图片描述
最后两者一起作为预测分数:
在这里插入图片描述

所以其实对应开头的两个问题,模型要做的事情就是user-item传播层学习行为影响力度,item-item传播层去捕获行为语义

3.6 Model Training

BPR loss:它强调了观察到的和未观察到的用户-物品交互之间的相对顺序,并声称观察到的交互对于用户的偏好学习具有指导性,应该比未观察到的交互获得更高的预测分数。

在这里插入图片描述
其中 O = { ( u , i , j ) ∣ ( u , i ) ∈ R + , ( u , j ) ∈ R − } O=\left\{(u, i, j) \mid(u, i) \in R^{+},(u, j) \in R^{-}\right\} O={(u,i,j)(u,i)R+,(u,j)R}表示成对目标行为训练数据集;
R + R^+ R+表示观察到的目标行为;
R − R^- R表示了没有观察到的目标行为;
σ ( ⋅ ) \sigma (\cdot ) σ()激活函数;
Θ \Theta Θ是所有可训练的参数
β \beta β是归一化系数,控制L2归一化的强度,以防止过拟合。

我们提出了两种广泛使用的dropout方法:message dropout和node dropout到一些用户节点和项目节点。Message dropout以possibility的形式随机删除一些流动的消息,而node dropout则随机删除一个特定的节点,并提取其所有流动的信息。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值