Day9概率论

随机变量与分布

定义

随机变量是一个从样本空间(所有可能结果的集合)到实数集的函数。样本空间中的每个结果都对应于随机变量的一个值。随机变量的值可以是离散的,也可以是连续的。随机变量通常用大写字母表示,如 X、Y 或 Z。

随机变量

随机变量是将样本空间映射到实数的函数。根据其取值的类型,分为:

离散随机变量:取有限或可数无限个值,如掷骰子的结果。

对于离散型随机变量 X,其概率质量函数为
P(X=x)
其中 x* 是 X 可能取的值。PMF 满足以下条件:

  1. 非负性:对于所有的 x,有 P(X=x)≥0。

  2. 归一性:所有可能取值的概率之和等于1,即
    ∑_xP(X=x)=1

连续随机变量

取值可以是某个区间内任意实数的随机变量。与离散型随机变量不同,连续型随机变量的取值是连续的,不可数的。连续型随机变量的概率分布通常由概率密度函数(Probability Density Function, PDF)描述。 ,如身高、体重。

性质:

  1. 连续性:随机变量的取值是连续的,可以在一个或多个区间内取任意值。

  2. 不可数性:取值是不可数的,即有无限多个可能的取值。

  3. 概率分布:每个取值区间都有一个特定的概率,且整个取值范围的概率密度函数积分等于1。

  4. 连续型的随机变量取值在任意一点的概率都是0。在函数曲线上某个点的概率其实是取的该点附近值的大小。

  5. 连续情况下,端点无所谓。P{a≤x≤b}=P{a<x<b}

概率密度函数

对于一维实随机变量X,如果存在非负可积函数f(x),使得对于任意实数x,
a< b


P(a<X< b)=\\int_{a}^{b}f(x)dx

,则称f(x)为随机变量X的概率密度函数。

密度函数f(x) 具有下列性质:

非负性:对于所有的 x,有
f(x)>=0
 

归一性:概率密度函数在整个取值范围的积分等于1,即
\int_{-\infty }^{+\infty }f(x)dx=1

概率密度函数的积分其实就是求曲线在某个区间内的面积。

概率分布

随机变量的概率分布描述其可能取值及相应的概率。

离散概率分布:例如,二项分布和泊松分布。

连续概率分布:例如,正态分布和指数分布。

期望与方差
期望值

随机变量(X)的期望(E(X))是其取值的加权平均,权重为相应的概率:

离散情况:

E(X)=\sum_{i}x{}_{i}^{}P(X=xi)P(X=xi)

连续情况:

E(X)=\int_{-\infty }^{\infty }​​xf(x)dx

2.方差

方差(Var(X))衡量随机变量离期望值的散布程度,计算公式为:

Var(X)=E[(X-E(X))^2]

也可以表示为:

Var(X)=E(X^2)-E(X)^2

多维随机变量

多维随机变量是指由多个随机变量组成的向量这些随机变量可以是相关的,且通常用联合分布来描述它们的行为。

1.多维随机变量的定义

离散多维随机变量:如果每个随机变量(Xi)只能取有限或可数个值,则称该随机变量为离散多维随机变量。

连续多维随机变量:如果随机变量可以取任意实数值,则称为连续多维随机变量。

2.联合分布

联合分布函数:对于随机变量(mathbf{X}),其联合分布函数定义为:

边缘分布:可以通过对联合分布进行积分(对连续变量)或求和(对离散变量)来得到边缘分布。

3.条件分布

条件分布用于表示在已知某些变量的情况下,其他变量的分布。

4.相关性与独立性

独立性:若随机变量(X1,X2,ldots,Xn)是相互独立的,则其联合分布等于各个边缘分布的乘积.

相关性:通过协方差矩阵可以衡量多维随机变量之间的线性关系。

二维随机变量的概念

二维随机变量是由两个随机变量组成的向量,通常用来描述两个相关或不相关的现象。这两个随机变量可以是离散的,也可以是连续的。

二维离散型随机变量的分布

联合分布:对于两个离散型随机变量,联合分布指的是这两个随机变量同时取特定值的概率。可以用一个表格表示,每个单元格中的值表示对应两个随机变量取特定值的概率。

边缘分布:边缘分布是指其中一个随机变量的分布,可以通过对联合分布进行求和来得到,即将另一随机变量的所有可能值的概率加起来,得到所关注的随机变量的分布。

二维连续随机变量的分布

联合密度函数:对于两个连续随机变量,联合密度函数描述了这两个变量同时取特定值的概率密度。这个函数在某个区域内的积分可以给出这两个变量落在该区域的概率。

边缘密度函数:边缘密度函数是指某一个随机变量的密度函数,可以通过对联合密度函数在另一个随机变量的范围上进行积分来得到。

条件分布

条件分布用于描述在已知一个随机变量取特定值的情况下,另一个随机变量的分布。对于离散随机变量,可以通过联合分布除以已知随机变量的边缘分布来得到;对于连续随机变量,则通过联合密度函数除以边缘密度函数得到。

随机变量的独立性

两个随机变量被称为独立的,如果一个随机变量的发生不会影响另一个随机变量的发生。在离散情况下,这意味着联合分布等于各自边缘分布的乘积。在连续情况下,也是同样的原则,联合密度函数等于边缘密度函数的乘积。

二维离散型随机变量函数的分布

对两个离散型随机变量进行某种函数变换时,得到的新随机变量的分布可以通过组合原始随机变量的联合分布来计算。例如,如果有两个随机变量并定义一个新随机变量为它们的和或差,可以通过计算这些新值的出现概率来构建其分布。

二维随机变量提供了一个方式来理解和分析两个相关现象之间的关系。通过联合分布、边缘分布和条件分布等概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值