Day01-概率论与数理统计-概率论基础(DataWhale)

本文详细介绍了概率论的基础概念,包括随机试验、样本空间、随机事件及概率的公理性。讨论了古典概率、条件概率、独立事件、全概率公式和贝叶斯公式。此外,还涉及排列、组合、伯努利模型和二项概率公式,为理解统计学和后续的数学分析奠定了基础。
摘要由CSDN通过智能技术生成

一、概率论基础

1.1 概念

随机试验E

  • 在相同的条件下可以重复进行
  • 每次试验的可能结果不止一个,并且能事先明确试验的可能结果
  • 进行试验之前不能确定哪一个结果会出现

样本空间S

  • 随机试验的所有可能结果的集合

样本点

  • 样本空间的元素

随机事件

  • 试验E的样本空间S的子集

基本事件

  • 一个样本点组成的单点集

频率

  • 在相同条件下进行n次试验,在这n次试验中,事件A发生的次数 n A n_A nA称为事件A发生的频数, n A n \frac{n_A}{n} nnA称为频次,记作 f n ( A ) f_n(A) fn(A)

概率

  • 对于随机试验E的每一事件A赋予一个实数,记作 P ( A ) P(A) P(A),称为事件A的概率,满足下列条件【公理性

    • 非负性: 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0P(A)1
    • 规范性:对于必然事件S,有 P ( S ) = 1 P(S)=1 P(S)=1
    • 完全可加性:两两互不相容的事件有, P ( A 1 + A 2 + ⋅ ⋅ ⋅ ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ P(A_1+A_2+···)=P(A_1)+P(A_2)+··· P(A1+A2+)=P(A1)+P(A2)+
  • 性质

    • P ( Φ ) = 0 P(\Phi)=0 P(Φ)=0

    • 有限可加性

    • P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1-P(A) P(A)=1P(A)

    • P ( A − B ) = P ( A ) − P ( A B ) P(A-B) = P(A) - P(AB) P(AB)=P(A)P(AB)

      • 若A包含B,则 P ( A − B ) = P ( A ) − P ( B ) 且 P ( A ) ≥ P ( B ) P(A-B) = P(A)-P(B) 且 P(A)\geq P(B) P(AB)=P(A)P(B)P(A)P(B)
    • (加法公式) P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B) = P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB)

      • P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C) = P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

古典概率(等可能概率)

  • 有限个元素
  • 每个基本事件等可能发生
1.2 概率

条件概率

  • P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
  • P ( B 1 ∪ B 2 ∣ A ) = P ( B 1 ∣ A ) + P ( B 2 ∣ A ) − P ( B 1 B 2 ∣ A ) P(B_1 \cup B_2|A)=P(B_1|A)+P(B_2|A)-P(B_1B_2|A) P(B1B2A)=P(B1A)+P(B2A)P(B1B2A)

性质:

  • P ( A ∣ B ) ≥ 0 P(A|B) \geq 0 P(AB)0
  • P ( Ω ∣ B ) = 1 P(\Omega|B)=1 P(ΩB)=1
  • A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An两两互不相容,则 P ( ∑ i ∞ A i ∣ B ) = ∑ i ∞ P ( A i ∣ B ) P(\sum_i^\infty A_i|B)=\sum_i^{\infty}P(A_i|B) P(iAiB)=iP(AiB)

乘法公式

  • P ( A B ) = P ( B ∣ A ) P ( A ) P(AB) = P(B|A)P(A) P(AB)=P(BA)P(A)

  • P ( A B ) = P ( A ∣ B ) P ( B ) P(AB) = P(A|B)P(B) P(AB)=P(AB)P(B)

  • P ( A B C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A B ) P(ABC)=P(A)P(B|A)P(C|AB) P(ABC)=P(A)P(BA)P(CAB)【第一步正确,在第一步正确的条件下,第二步正确,在第一步和第二步都正确的条件下,第三步正确】

全概率公式

  • P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋅ ⋅ ⋅ + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+···+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)

贝叶斯公式【已知结果,推出可能性最大的原因】

  • P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(A|B_j)P(B_j)} P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)
  • P ( A i ) : 先 验 概 率 ; P ( A i ∣ B ) : 后 验 概 率 P(A_i):先验概率;P(A_i|B):后验概率 P(Ai):P(AiB):

事件的独立性:A的概率不受B发生与否的影响

  • 定义:A,B独立则, P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

  • A、B独立 <==> P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)

  • Φ 、 Ω \Phi 、\Omega ΦΩ与任意事件 A A A 独立

  • A、B独立 ==> A 与 B ‾ 、 A ‾ 与 B 、 A ‾ 与 B ‾ A与\overline{B}、\overline{A}与B、\overline{A}与\overline{B} ABABAB与独立

  • P ( A ) = 0 或 P ( A ) = 1 P(A)=0或P(A)=1 P(A)=0P(A)=1则A与任意事件独立【 P ( A ) = 0 P(A)=0 P(A)=0也有可能发生不能等同空集 Φ \Phi Φ

独立是可能性,互不影响;互不相容是 A B = Φ , P ( A B ) = 0 AB=\Phi,P(AB)=0 AB=ΦP(AB)=0

P ( A ) > 0 、 P ( B ) > 0 P(A)>0、P(B)>0 P(A)>0P(B)>0,则独立与互不相容不能同时成立

A 、 B 、 C A、B、C ABC 独立: P ( A B ) = P ( A ) P ( B ) 、 P ( B C ) = P ( B ) P ( C ) 、 P ( A C ) = P ( A ) P ( C ) 、 P ( A B C ) = P ( A ) P ( B ) P ( C ) P(AB)=P(A)P(B)、P(BC)=P(B)P(C)、P(AC)=P(A)P(C)、P(ABC)=P(A)P(B)P(C) P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(AC)=P(A)P(C)P(ABC)=P(A)P(B)P(C)

1.3 排列
  • 不重复排列:从n个不同元素中取出m个 P n m = n ( n − 1 ) ⋅ ⋅ ⋅ ( n − m + 1 ) = n ! ( n − m ) ! P_n^m=n(n-1)···(n-m+1)=\frac{n!}{(n-m)!} Pnm=n(n1)(nm+1)=(nm)!n!

  • 重复排列:从n个不同元素中取出m个 n m n^m nm

1.4 组合
  • 从n个不同元素中取出m个 C n m = P n m m ! = n ! m ! ( n − m ) ! C_n^m =\frac{P_n^m}{m!} =\frac{n!}{m!(n-m)!} Cnm=m!Pnm=m!(nm)!n!
    • C n m = C n n − m ; C n 0 = 1 C_n^m=C_n^{n-m};C_n^0=1 Cnm=Cnnm;Cn0=1
1.5 伯努利模型

独立实验序列: E 1 , E 2 , . . . , E n E_1,E_2,...,E_n E1,E2,...,En独立

n重独立实验: E 1 , E 1 , . . . , E 1 E_1,E_1,...,E_1 E1,E1,...,E1 n次试验彼此独立,记作 E n E^n En【一次实验做n次】

伯努利试验:实验结果只有两种 P ( A ) = p ; P ( A ‾ ) = 1 − p P(A)=p;P(\overline{A})=1-p P(A)=p;P(A)=1p

n重伯努利试验:试验n次,彼此独立,试验结果只有两种 P n ( k ) = C n k p k ( 1 − p ) n − k P_n(k)=C_n^kp^k(1-p)^{n-k} Pn(k)=Cnkpk(1p)nk

二项概率公式: P n ( k ) = C n k p k q n − k ; q = 1 − p P_n(k)=C_n^kp^kq^{n-k};q=1-p Pn(k)=Cnkpkqnk;q=1p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值