【地级市银行监管1011】2024顶刊重磅数据!《银行监管处罚如何影响企业创新》地级市独家数据限时分享

今天给大家分享的国内顶级期刊2024年发表的期刊论文《银行监管处罚如何影响企业创新》使用到的重要数据,该论文通过构建地级市银行监管处罚数据,探究了银行监管处罚对当地企业创新的影响。该文章是2024年最新发表在中国工业经济上的论文,经济研究是我国经济、统计类学科的顶级期刊,能够入选的论文含金量不言而喻,该论文内容丰富,数据收集过程难度较大,思路过程严谨,研究结论具有现实意义,因而能够入选中国工业经济,本次小编将给大家送上关于这篇论文中使用到的重要数据——地级市银行监管处罚数据,数据获取请关注公众号“明天科技屋”并打开公众号该文章获取文末数字关键词并回复,在该数据发布的24小时之内可以通过分享获得。

一、论文讲解

本文以2011-2020年A股上市公司为研究样本,分析了地级市银行监管处罚力度对当地企业创新的影响,并根据企业规模、银企关系以及企业技术属性进行了异质性分析。机制分析发现,银行监管处罚主要是通过增加企业可用信贷资源、优化企业信贷结构和促进企业“脱虚向实”三种方式提高企业创新水平。并从处罚的方式和结果两方面进行了拓展性分析,详细考察了具体拓展方式和不同处罚结果对企业的影响,最终得出结论,给出相应建议。

(一)模型构建

本文的回归模型如下:

其中,i代表企业个体,j代表城市,t代表年份;Patent代表企业的创新水平;Bankpenalty代表地级市银行监管处罚程度;X代表一系列控制变量;三个\lambda分别代表企业固体效应、时间固定效应以及城市固定效应,\varepsilon代表随机误差项。

被解释变量Patent:企业创新水平,论文采用的是企业发明专利的申请数加1取对数衡量。

解释变量BankPenalty:地级市银行监管处罚程度,论文是通过谷歌地图确定被处罚银行的地理位置,进而汇总到城市层面,得到城市银行监管处罚程度数据,最终通过使用地级市银行行政处罚总数与当地银行机构数量的比值度量银行监管处罚指标。

控制变量X:本文的控制变量主要企业性质、规模、成长能力、盈利能力、营业成本、固定资产占比、账面市值比、董事会规模、具有法律背景高管占比、监管层持股、企业专利存量、人均GDP、传统金融发展、市场化指数、行业竞争度和行业竞争度的平方等宏观和微观层面的数据。

(二)数据来源

银行监管处罚数据来源于国家金融监管总局公布的银行行政处罚信息,其他城市相关变量来源于《统计年鉴》 等,企业专利数据来源于国家知识产权局,其他数据来源于CSMAR和CNRDS数据库。

(三)实证分析

        1.基准回归

        2.内生性处理

        3.稳健性分析

主要包括更换估计方法、更换被解释变量、企业创新滞后性、剔除直辖市样本、Heckman两步法

        4.异质性分析

主要从企业规模、银企关系以及企业的技术属性考察差异化影响

        5.机制分析

(四)、拓展性分析

        1.考虑不同处罚理由、对象以及处罚程度的影响

        2.考虑对企业创新质量和规模的影响

(五)、结论和建议

以上就是本篇论文的大致框架和内容,大家感兴趣可以自行下载学习,在此不做过多介绍。

二、重要数据

从本篇论文的研究内容和框架结构大家可以看出,该论文是分析宏观层面地级市银行监管处罚对微观个体企业创新的影响,不仅需要对行政处罚机构进行识别与定位,同时还需要对处罚的详细信息进行识别、划分、汇总,同时数据信息很大,整理难度非常高,因此,小编将论文中涉及到的重要数据信息进行了整理,本文涉及到的数据主要包括对基准回归解释变量地级市银行监管处罚以及拓展性分析不同处罚理由、对象以及程度的地级市数据,与此同时,论文的样本区间为2011-2020年,考虑到大家实际的研究需求,本文将数据拓展至2007-2023年,数据内容极大丰富,方便大家研究,数据内容如下:

(一)银行监管处罚原始数据

我们对原始数据进行了收集整理,并按照论文需要的数据内容进行识别、整理,将结果记录在对应的数据列中,由于原始数据中包含了对类银行的金融机构的处罚,我们借鉴CSMAR、CNRDS公布的银行机构信息,保留了银行机构相关的处罚数据,最终得到了接近30000条的数据,保留在“原始数据”表格中,数据呈现如下:

同时我们参考论文使用谷歌地图对银行机构进行定位,锁定银行所在的具体城市,方便最后汇总到地级市城市上面,但是我们在定位过程中发现有些机机构地图不仍然无法定位,针对这些无法定位到机构,我们结合处罚公开机构以及天眼查等软件查询到机构到详细地址,最终确定机构地址。

(二)面板数据

我们根据原始数据统计结果,进行地级市层面数据汇总,并将其转换为面板数据,首先,我们对基准回归使用到的地级市银行行政处罚进行了测量,统计了不同地级市不同年份的银行行政处罚次数,保留在“总的行政处罚次数”数据列中,论文中使用处罚次数与银行机构的比值作为处罚程度的度量,因此,大家在使用中还需要计算一下不同城市的银行机构数量,这一块数据大家在CNRDS以及CDMAR数据库中可以找到;同时针对拓展性分析中对不同处罚的数据整理,针对不同处罚理由的处罚,我们对处罚理由进行了识别分析,参考论文进行分类,最终将不同类别的处罚次数汇总到地级市层面,数据分别保存在“公司治理”、“信贷业务相关处罚”、“非业务相关处罚”等数据列中,具体的数据大家可以参考一下论文,同时说明一下,这部分内容识别具有一定的主观性以及处罚理由的交叉性,大家需要在研究过程中按照自己理解以及需要重新进行识别,经过我们的识别处理,能够大幅度降低大家后续工作量,如若与你理解不一致的自行修改,介意的话勿获取该数据。针对不同处罚程度的数据,我们参考论文按照处罚结果,将其划分为重度和轻度处罚,在重度处罚中进一步细分为重度处罚个人和重度处罚机构,同时基于处罚对象角度将其划分为对个人、对机构以及对个人和机构同时处罚三种类型,具体数据保存在“个人处罚次数”、“机构处罚次数”、“机构个人处罚次数”、“轻度处罚次数”、“重度处罚次数”、“重度处罚个人次数”、“重度处罚机构次数”等数据列中;同时论文中还使用到了《处罚办法》外生冲击虚拟变量,我们也参考论文进行了虚拟变量设置,保存在“处罚办法”数据列中,我们对论文的数据区间进行了拓展,拓展到2007-2023年,汇总到300个地级市层面,并转换成面板数据格式方便大家研究,数据保存在“面板数据”表中,数据折叠展示如下:

以上就是本次分享的具体内容,最后针对该数据进行声明:大家可以看到该数据内容比较多,整理起来也非常麻烦,大家在研究时也会进行数据收集整理,难免可能会出现疏忽,导致极少部分数据整理出现偏差,希望大家在研究时重新检查核对一下,如若能够反馈给我们,我们非常感谢,如果大家介意该问题,请不要分析或者购买该数据。数据在发布时间起24小时内通过关键词指示操作即可免费获取,关注公众号“明天科技屋”并回复数字关键词了解数据获取方式,该数据又明天科技屋一手整理,版权归明天科技屋所有,未经允许,不得用于商业盈利,否则将追随法律责任!!!

文章关键词为:“1011” 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不一样的邓先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值