题目描述
Description
在某大学的农场里,n间牛舍住着n头奶牛。现在你需要为n间牛舍的外墙涂色,有m种可选颜色。
我们已经知道当相邻两间牛舍颜色相同时,奶牛们会集体发疯。
请问有多少种涂色方案会让奶牛们发疯,由于答案可能较大,输出对1000000007求余的结果。
输入格式
仅一行,两个整数n和m,代表牛舍数量和颜色数量。(1<=n<=1e12),(1<=m<=1e12)
输出格式
仅一样,一个整数代表答案。
输入样例
3 2
输出样例
6
提示
3牛舍2颜色方案有(1,1,1),(1,1,2),(1,2,2),(2,1,1),(2,2,1),(2,2,2),共6种方案会让奶牛发疯。
作者 30002692
解题思路
有n间牛舍,有m种颜色,如果两间相邻的颜色是一样的,那么就不符合条件,那么是什么意思呢?
比如说第一间我用了a色,那么第二间就不能用a色了,可选方案缩减成m-1,第三间的话也就是不能用b色,但是可以用a色,也有m-1个方案,那么也就是答案变成了m*(m-1)*…(m-1) n个m-1.由于时间复杂度的原因,那么不会发疯的方案就已经知道了,那么会发疯的方案就是原来的总方案减去不会发疯的方案就可以了,如果直接暴力肯定超时,所以要用快速幂这个算法来写。
#include <iostream>
#include <cstring>
using namespace std;
const long long MOD=1000000007;
long long fast_power(long long a,long long b)
{
long long ans=1;
a=a%MOD;
while(b)/*当b不为0的时候*/
{
if(b%2==1)
{
ans=(ans*a)%MOD;
}
a=(a*a)%MOD;
b/=2;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
long long n,m;cin>>n>>m;
long long p=(fast_power(m,n)-m*fast_power(m-1,n-1)%MOD+MOD)%MOD;
cout<<p<<endl;
return 0;
}
关键是取模的这个运算,只要是有可能产生溢出的数的地方都要进行取模。