18730 涂色问题(快速幂)

该博客探讨了一道编程题目,涉及给定牛舍数量和颜色种类时,如何计算会让奶牛发疯的涂色方案数。博主通过快速幂算法解决了这个问题,避免了时间复杂度过高的情况,并给出了C++实现的代码示例。关键在于理解当相邻牛舍颜色相同会导致奶牛发疯,以及如何通过数学计算得到正确答案。
摘要由CSDN通过智能技术生成

题目描述

Description
在某大学的农场里,n间牛舍住着n头奶牛。现在你需要为n间牛舍的外墙涂色,有m种可选颜色。
我们已经知道当相邻两间牛舍颜色相同时,奶牛们会集体发疯。
请问有多少种涂色方案会让奶牛们发疯,由于答案可能较大,输出对1000000007求余的结果。

输入格式
仅一行,两个整数n和m,代表牛舍数量和颜色数量。(1<=n<=1e12),(1<=m<=1e12)

输出格式
仅一样,一个整数代表答案。

输入样例
3 2

输出样例
6

提示
3牛舍2颜色方案有(1,1,1),(1,1,2),(1,2,2),(2,1,1),(2,2,1),(2,2,2),共6种方案会让奶牛发疯。

作者 30002692

解题思路

有n间牛舍,有m种颜色,如果两间相邻的颜色是一样的,那么就不符合条件,那么是什么意思呢?
比如说第一间我用了a色,那么第二间就不能用a色了,可选方案缩减成m-1,第三间的话也就是不能用b色,但是可以用a色,也有m-1个方案,那么也就是答案变成了m*(m-1)*…(m-1) n个m-1.由于时间复杂度的原因,那么不会发疯的方案就已经知道了,那么会发疯的方案就是原来的总方案减去不会发疯的方案就可以了,如果直接暴力肯定超时,所以要用快速幂这个算法来写。

#include <iostream>
#include <cstring>

using namespace std;
const long long MOD=1000000007;
long long fast_power(long long a,long long b)
{
    long long ans=1;
    a=a%MOD;
    while(b)/*当b不为0的时候*/
    {
        if(b%2==1)
        {
            ans=(ans*a)%MOD;
        }
        a=(a*a)%MOD;
        b/=2;
    }
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    long long n,m;cin>>n>>m;
    long long p=(fast_power(m,n)-m*fast_power(m-1,n-1)%MOD+MOD)%MOD;
    cout<<p<<endl;
    return 0;
}

关键是取模的这个运算,只要是有可能产生溢出的数的地方都要进行取模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值