前言
MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。

一、准备工作
我们需要在使用前进行模块调用的操作,这也是前期必须要操作的一个步骤。代码如下:
import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor
def network():
model = nn.SequentialCell(
nn.Flatten(),
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10))
return model
二、权重介绍
保存模型使用

本文详细介绍了MindSpore框架中如何保存和加载模型,以及MindIR的使用,它作为统一模型文件支持端边云部署。通过MindIR,开发者可以实现模型在不同硬件平台上的推理,如在Ascend 310 AI处理器上的部署。
最低0.47元/天 解锁文章

1337

被折叠的 条评论
为什么被折叠?



