一.题目描述
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
二.代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int t, x, y;
cin >> t;
int a[4];
do
{
a[0] = t / 1000, a[1] = t / 100 % 10, a[2] = t / 10 % 10, a[3] = t % 10;
sort(a, a + 4);
x = a[3] * 1000 + a[2] * 100 + a[1] * 10 + a[0];
y = a[0] * 1000 + a[1] * 100 + a[2] * 10 + a[3];
cout << setfill('0') << setw(4) << x << " - "
<< setfill('0') << setw(4) << y << " = "
<< setfill('0') << setw(4) << x - y << endl;
t = x - y;
}
while(t!=0&&t!=6174);
}