基于深度学习的聚类算法综述

本文介绍了几种基于深度学习的聚类算法,如自编码器聚类、变分自编码器聚类、深度聚类网络和生成对抗网络聚类,强调了它们在非线性数据处理中的优势,同时指出了手动设置簇数量和训练资源消耗的问题。

近年来,随着深度学习的发展,基于深度学习的聚类算法也得到了广泛的研究和应用。本文将介绍几种常见的基于深度学习的聚类算法,包括自编码器聚类、变分自编码器聚类、深度聚类网络、生成对抗网络聚类等,并给出相应的算法原理。

一、自编码器聚类

自编码器是一种无监督学习方法,可以将高维数据压缩成低维编码,并实现重构。自编码器聚类即将自编码器用于聚类问题,将编码作为簇的中心,将数据点分配到最近的簇中。自编码器聚类的优点是对于非线性数据具有较好的表达能力,缺点是需要手动设置簇的数量。

自编码器聚类的原理是通过自编码器将原始数据映射到低维空间,然后使用聚类算法将映射后的数据进行聚类。自编码器是一种由编码器和解码器组成的神经网络,编码器将原始数据映射到低维空间,解码器将映射后的数据重构成原始数据。自编码器聚类的过程是先训练自编码器,得到编码,然后使用聚类算法对编码进行聚类。

在这里插入图片描述
Matlab代码示例:

data = csvread('data.csv'); % 读取数据
input_size = size(data, 2); % 输入向量维度
hidden_size = 2; % 隐藏层维度
num_epochs = 100; % 训练轮数
batch_size = 32; % 批量大小

% 构建自编码器模型
autoencoder = trainAutoencoder(data', hidden_size, ...
    'MaxEpochs', num_epochs, 'BatchSize', batch_size);

% 得到编码
code = predict(autoencoder.Encoder, data');

% 进行K均值聚类
idx = kmeans(code, K);

% 绘制散点图
scatter(code(:,1), code(:,2), [], idx);

二、变分自编码器聚类

变分自编码器是一种能够生成具有随机性的编码的自编码器,常用于图像生成和数据压缩等领域。变分自编码器聚类即将变分自编码器用于聚类问题,将生成的编码作为簇的中心,将数据点分配到最近的簇中。

变分自编码器聚类的原理是通过变分自编码器将原始数据映射到低维空间,然后使用聚类算法将映射后的数据进行聚类。变分自编码器是一种由编码器、解码器和隐变量网络组成的神经网络,隐变量网络生成随机噪声,编码器将原始数据和随机噪声映射到低维空间,解码器将映射后的数据和随机噪声重构成原始数据。变分自编码器聚类的过程是先训练变分自编码器,得到生成的编码,然后使用聚类算法对编码进行聚类。

Matlab代码示例:

data = csvread('data.csv'); % 读取数据
input_size = size(data, 2); % 输入向量维度
hidden_size 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值