- 博客(26)
- 收藏
- 关注
翻译 Uninformed Students: Student–Teacher Anomaly Detection with Discriminative Latent Embeddings(翻译)
未知学生:学生-教师异常检测与鉴别潜在嵌入原文:https://export.arxiv.org/pdf/1911.02357Uninformed Students: Student–Teacher Anomaly Detection with Discriminative Latent Embeddings摘要针对高分辨率图像中无监督异常检测和像素精确异常分割的难题,我们引入了一个强大的师生框架。学生网络被训练为回归描述教师网络的输出,该网络是在一个大的自然图像的补丁数据集上预训练。这避免了对先前
2021-04-13 22:40:14 1508 2
翻译 An adaptive LeNet-5 model for anomaly detection(翻译)
一种用于异常检测的自适应LeNet-5模型原文: https://doi.org/10.1080/19393555.2020.1797248摘要介绍了一种特征选择算法,采用随机森林分类器进行递归特征消除,并根据特征重要性排序的先后顺序选择前49个特征,提出了一种基于LeNet-5卷积神经网络的攻击检测模型,命名为LeNet-4网络模型。在其网络结构中,去掉了原LeNet-5网络的第一个池层和最后一个全连接层,降低了模型的计算量和网络复杂度,并通过双卷积层和单池层的结构增强了网络的自学习能力。本文使用C
2021-01-16 17:00:04 1138 1
翻译 A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection(翻译)
用于无监督异常检测的综合真实数据集原文:https://ieeexplore.ieee.org/document/8954181摘要自然图像数据中异常结构的检测在计算机视觉领域的众多任务中具有极其重要的意义。无监督异常检测方法的发展需要数据来训练和评估新的方法和思想。我们介绍了MVTec异常检测(MVTec-AD)数据集,其中包含5354幅不同对象和纹理类别的高分辨率彩色图像。它包含正常图像,即无缺陷图像、用于训练的图像和用于测试的异常图像。异常表现为70多种不同类型的缺陷,如划痕、凹痕、污染和各种结
2021-01-14 17:16:51 1787 2
翻译 Train a Plug-and-play Action Classifier for Anomaly Detection
图卷积标签噪声清洁器:为异常检测训练即插即用动作分类器原文:arXiv:1903.07256v1摘要在以往的工作中,弱标签下的视频异常检测是一个典型的多实例学习问题。在本文中,我们提供了一个新的视角,即噪声标签下的有监督学习任务。在这样的观点下,只要去除标签噪声,我们就可以直接将全监督行为分类器应用于弱监督异常检测,并充分利用这些成熟的分类器。为此,我们设计了一个图卷积网络来校正有噪声的标签。基于特征相似性和时间一致性,我们的网络将监控信号从高置信度片段传播到低置信度片段。以这种方式,网络能够为动作分
2021-01-13 11:52:16 444
翻译 Evaluation of deep learning approaches based on CNNs for corrosion detection
基于卷积神经网络的腐蚀检测深度学习方法评价原文:摘要腐蚀是结构系统中的一个主要缺陷,具有重大的经济影响,如果不加以控制,可能会带来安全风险。目前,检查员通过目视评估结构的状况来识别腐蚀。这种方法费时、乏味且主观。机器人系统,如无人机,与计算机视觉算法相结合,具有执行自主损伤检测的潜力,可以显著减少检查时间,并导致更频繁和客观的检查。本研究评估了卷积神经网络在腐蚀检测中的应用。卷积神经网络学习适当的分类特征,在传统的算法是手工设计的。卷积神经网络的一个主要优点是不需要依赖于先验知识和人为设计特征。本文介
2021-01-06 17:31:20 371
翻译 DEEP LEARNING FOR ANOMALY DETECTION: A SURVEY(翻译)
异常检测的深度学习研究综述原文: arXiv:1901.03407摘要异常检测是一个重要的问题,在不同的研究领域和应用领域都得到了很好的研究。本文的研究目的有两个:首先,我们对基于深度学习的异常检测的研究方法进行了系统而全面的综述。此外,我们回顾了这些方法在不同应用领域中的应用,并评估了它们的有效性。我们根据所采用的基本假设和方法,将最先进的深度异常检测研究技术分为不同的类别。在每个类别中,我们概述了基本的异常检测技术及其变体,并提出了关键假设,以区分正常和异常行为。此外,对于每一个类别,我们也提出了
2021-01-05 15:06:32 3320
翻译 Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm(翻译)
基于直方图的异常值得分(HBOS):一种快速无监督异常检测算法原文:https://www.dfki.de/web/forschung/publikationen/renameFileForDownload?filename=HBOS-KI-2012.pdf&file_id=uploads_1716摘要在无监督的数据集检测过程中,无需对异常集进行先验训练。本文提出了一种基于历史的离群点检测(HBOS)算法,该算法在线性时间内对记录进行评分。它假设特征的独立性,使得它比多元方法快得多,但代价是精
2021-01-04 17:30:07 1240
翻译 TRAINING CONFIDENCE-CALIBRATED CLASSIFIERS FOR DETECTING OUT-OF-DISTRIBUTION SAMPLES(翻译)
用于检测分布外样本的置信度校正分类器的训练原文:https://arxiv.org/pdf/1711.09325.pdf摘要在许多实际的机器学习应用中,检测测试样本是来自于分布内(即,由分类器训练的分布)还是来自分布外与它有很大不同的问题出现了。然而,最先进的深度神经网络在其预测中高度自信,即不区分内部和外部分布。近年来,为了解决这一问题,人们提出了几种基于阈值的检测器。然而,由于以往的工作只关注于推理过程的改进,其性能很大程度上取决于分类器的训练。在本文中,我们提出了一种新的分类器训练方法,使这种推
2021-01-03 15:21:33 660
翻译 Deep learning for prognostics and health management:State of the art,challenges,and opportunities 翻译
预测和健康管理的深度学习:现状、挑战和机遇摘要提高工程系统的可靠性是航空航天、核能和水偏流等工程领域中许多应用的关键问题。这就需要高效有效的系统健康监测方法,包括处理和分析大量的机械数据以检测异常,并进行诊断和预测。近年来,深度学习是一个快速发展的领域,由于其能够从原始数据中挖掘复杂的表示,因此在解释振动、声发射和压力等状态监测信号方面,深度学习已显示出很有希望的结果。本文系统地回顾了最新的基于深度学习的PHM框架。它强调了该领域的最新趋势,并介绍了最先进的深层神经网络在系统健康管理方面的益处和潜力。此
2020-12-31 10:27:54 4152
翻译 基于Teager-Kaiser能量算子和深度置信网络的往复式压缩机阀门故障诊断方法
原文:An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks链接:https://doi.org/10.1016/j.eswa.2013.12.026摘要提出了一种实现往复式压缩机气门振动、压力和电流信号故障诊断的方法。由于压缩机结构和运动的复杂性,采集到的振动信号通常包含瞬态冲击和噪声。这就造成了有用信息
2020-12-30 21:30:34 2993
翻译 Intelligent Condition Based Monitoring of Rotating Machines using Sparse Auto-encoders(翻译)
摘要支持向量机(SVM)作为分类器在机器故障诊断中得到了广泛的应用。在大多数复杂的机器学习问题中,主要的挑战在于找到好的特征。稀疏自动编码器能够在无监督的情况下从输入数据中学习良好的特征。稀疏自动编码器和其他深层结构已经在文本分类、说话人和语音识别以及人脸识别等方面取得了很好的效果。本文比较了稀疏自编码器、基于Mahalanobis距离的快速分类器和支持向量机在空压机故障诊断中的性能。关键词-稀疏自动编码器,支持向量机,马氏距离,特征提取,特征选择一、 简介机器是工业的一个组成部分,在生产力方面起着重
2020-12-24 21:19:23 560
翻译 Convolutional Neural Network Based Fault Detection for Rotating Machinery(翻译)
基于卷积神经网络的旋转机械故障检测原文:https://doi.org/10.1016/j.jsv.2016.05.027摘要振动分析是一项成熟的技术,用于监测旋转机械的状态,因为振动模式因故障或机器状况而异。目前,主要采用人工设计的特征,如滚道的传球频率、RMS、峰度和波峰,用于自动故障检测。不幸的是,设计和解释这些特征需要相当程度的人类专业知识。为了使非振动分析专家能够进行状态监测,需要尽可能减少针对特定故障的特征工程的开销。因此,本文提出了一种基于卷积神经网络的状态监测特征学习模型。该方法的目的
2020-12-23 19:05:12 1065
翻译 ART–KOHONEN neural network for fault diagnosis of rotating machinery(翻译)
摘要本文综合自适应共振理论(ART)和Kohonen神经网络(KNN)的学习策略,提出了一种用于旋转机械故障诊断的神经网络。对于NNs,当新的情况发生时,需要将相应的数据添加到其数据集中进行学习。然而,“离线”神经网络不能自主适应,必须通过应用包括新数据在内的完整数据集进行再训练。艺术网络可以解决可塑性-稳定性的困境。换言之,他们能够在不忘记之前训练过的模式的情况下进行“在线”训练(稳定的训练);它可以根据环境的变化重新编码先前训练过的类别,并且是自组织的。ART-KNN还具有这些特性,比原来的ART更适
2020-12-22 15:03:42 453
翻译 基于综合几何特征和概率神经网络的故障诊断(翻译)
摘要故障诊断是保证水轮发电机组安全运行的重要环节。轴心轨迹辨识是HGU故障诊断的一种有效方法。提出了一种基于综合几何特征和概率神经网络(CGC-PNN)的HGU轴轨识别方法。该方法从结构、区域和边界三个方面提出了宏观欧拉数(ME)、模糊凸凹特征(FCC)和边界层特征(BL)来表示轴轨道。因此,由ME、FCC和BL组成的特征向量充分地集成了最有效、最全面的图像信息。最后,将该方法应用于800个故障样本,实验结果表明,该方法能有效地提高故障诊断的准确性。1介绍随着科学技术的不断发展,HGU的结构越来越复杂
2020-12-21 11:07:27 990
翻译 改进的自组织映射在振动信号检测中的应用(翻译)
摘要提出了一种基于振动信号检测的机械状态监测方法和基于功率谱密度高阶统计量的特征提取方法。该方法以Kohonen自组织映射为基础,采用多维相异测度进行二元分类。该方法具有高度的模块化和可扩展性,适用于多传感器状态监测环境。使用实际振动数据集(最多8个传感器)进行的实验表明,在不同的状态监测应用中,分类精度和鲁棒性都很高。1介绍机器状态监测(MCM)是一个工程领域,它正经历着从以人工为主的监测方法向高度自动化方法的转变,这种方法只需要在检测到故障的情况下进行手动干预。这种推动产生了对能够自动识别机器偏离
2020-12-19 22:03:37 490 1
翻译 AdvGAN ++(翻译)
摘要对抗性例子是虚构的例子,与原始图像没有区别,它们误导了神经网络并大大降低了它们的性能。 最近提出的AdvGAN是一种基于GAN的方法,它以输入图像为先验来生成以模型为目标的对手。 在这项工作中,我们通过提出AdvGAN ++(一种能比AdvGAN达到更高的攻击率并同时在MNIST和CIFAR10数据集上产生感知上逼真的图像)的AdvGAN ++,来展示潜在特征如何比输入图像更适合用于生成对手。1.引言及相关工作深度神经网络(DNN)现在已成为解决分类,对象识别,分割,强化学习,语音识别等各种任务的
2020-12-02 17:14:40 2473
翻译 A Review on Deep Learning Applications in Prognostics and Health Management (翻译)
深度学习在预测和健康管理中的应用综述摘要深度学习对预测和健康管理(PHM)引起了浓厚的兴趣,因为它具有强大的表示能力,自动化的功能学习能力以及解决复杂问题的一流性能。本文调查了使用深度学习在PHM方法方面的最新进展,目的是发现研究差距并提出进一步的改进建议。在简要介绍了几种深度学习模型之后,我们回顾并分析了使用深度学习进行故障检测,诊断和预后的应用。该调查验证了深度学习对PHM中各种类型的输入(包括振动,图像,时间序列和结构化数据)的普遍适用性。它还揭示了深度学习为主要PHM子字段提供了万能的框架:故障
2020-11-27 20:55:53 1946
翻译 Neural Network Inversion in Adversarial Setting via Background Knowledge Alignment(翻译)
深度学习技术的广泛应用引起了对训练数据和测试数据的新安全性关注。在这项工作中,我们将研究对抗性设置下的模型反演问题,其中对手旨在从模型的预测值中推断出有关目标模型的训练数据和测试数据的信息。我们开发了一种解决方案来训练第二个神经网络,该神经网络充当目标模型的逆向执行反演。可以使用对目标模型的黑盒访问来训练反演模型。我们提出了两种在对抗环境中训练反演模型的主要技术。首先,我们利用对手的背景知识来组成一个辅助集来训练反演模型,该模型不需要访问原始的训练数据。其次,我们设计了一种基于截断的技术来对齐反演模型,以便
2020-11-16 10:30:49 868
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人