改进的自组织映射在振动信号检测中的应用(翻译)

原文:Modified self-organising map for automated novelty detection applied to vibration signal monitoring
摘要
提出了一种基于振动信号检测的机械状态监测方法和基于功率谱密度高阶统计量的特征提取方法。该方法以Kohonen自组织映射为基础,采用多维相异测度进行二元分类。该方法具有高度的模块化和可扩展性,适用于多传感器状态监测环境。使用实际振动数据集(最多8个传感器)进行的实验表明,在不同的状态监测应用中,分类精度和鲁棒性都很高。
1介绍
机器状态监测(MCM)是一个工程领域,它正经历着从以人工为主的监测方法向高度自动化方法的转变,这种方法只需要在检测到故障的情况下进行手动干预。这种推动产生了对能够自动识别机器偏离正常状态的技术的需求。在这方面已经提出了许多方法,从振动级的基本阈值(可能是最常用的),到模糊逻辑和基于神经网络的学习方法[1-7]。
现有的有监督神经网络方法存在的一个主要问题是,在有监督神经网络的训练阶段需要来自所有类的训练数据。为了绘制决策边界,类标签是必不可少的。然而,MCM环境中的问题是,通常只有来自一个类的足够信息可用。系统必须能够检测机器状态何时偏离“正常”状态,并因此发出警告。由于在机器的整个自然生命周期内,振动特性会自然变化,并且任何使用的系统都必须能够作为系统正常运行的一部分来处理这一问题,这一事实使这个问题更加复杂。
目前大多数使用基于光谱特征的方法倾向于使用非常高分辨率的功率谱或非常低的分辨率的功率谱。每种方法都有自己的优缺点;高分辨率方法可以非常准确地识别机器中的故障起始点,但是这是以高计算成本和存储成本为代价的。此外,在任何模式识别的背景下,高维训练环境需要大量的训练范例来提供有意义的训练样本估计。这种情况可以通过使用低维输入数据来改善;虽然低分辨率方法可以描述光谱的一般趋势,但通常低分辨率不足以准确地指示故障条件的开始。低分辨率方法的频谱扩展倾向于掩盖故障频率。
在本文中,检测是使用一个改进的自组织映射(SOM)来实现的,正如Kohonen[8]首次提出的那样。SOM已经成为最常用的ann之一;它最常见的应用是通过高维映射和数据可视化来生成特征[9-11]。本文提出了一种改进的基于SOM的新颖性检测器来解决MCM问题。在这种新的体系结构中,假设训练数据是样本分布的适当表示,那么只使用来自一个类的训练数据来检测与该类的偏差。对算法进行了进一步的改进,使其能够在多个传感器上运行,并根据每个传感器返回的结果提供故障存在可能性的总体指示。
本文还提出了一种新的基于统计的功率密度谱特征集。新的特征集旨在在高分辨率和低维复杂度之间取得平衡。降维是通过这种新的特征提取技术隐式完成的。
本文按以下方式组织。第2节简要介绍了SOM及其对算法的修改。第三节讨论了新的特征生成技术。第四节介绍了所选的两个实验数据集,第五节详细介绍了SOM的实验训练过程。然而,由于在这项工作中使用了不同的特性集,因此无法直接与我们先前工作的结果进行性能比较。然而,第6节通过给出的实验结果很好地说明了该方法的性能。
2Kohonen SOM

SOM已用于各种不同的应用。SOM用于新颖性检测的应用已经有了比较充分的文献[8,12]。SOM是一种神经网络模型,以其在高维数据分析和映射中的应用而闻名。在最简单的意义上,SOM能够将多维输入向量映射到一个简单的低维网格结构上,通常是一维到三维的。人们也可以将SOM看作是高维输入数据的概率密度函数在低维显示器上的“非线性投影”。

地图由一组规则形状的地图单元或神经元组成。神经元的拓扑结构(神经元的排列方式)通常是矩形或六边形。根据应用程序的不同,它也可以是随机网格,如本文后面使用的示例所示。每个神经元都有一个邻域函数来指定它与相邻神经元的关系。
SOM的训练是通过最小化其神经元和输入向量之间的度量来完成的。这种度量的一个实际例子是最小距离度量。存在各种距离度量,例如欧几里德距离、曼哈顿距离或链路距离。
设x为n维输入向量,与所有神经元进行比较,Mj(n):获胜神经元,Mc定义为最佳匹配节点,即度量值最小的节点,用下标c表示:
在这里插入图片描述
在每一个训练阶段,获胜神经元及其相邻的神经元根据方程向输入向量移动
在这里插入图片描述
其中,Mj(n)表示离散时间索引n处的第j个神经元,η(n)是非递增学习速率,Λcj(·)是获胜单元周围的任意非递增邻域函数。高斯函数是Λcj的一个很好的选择
在这里插入图片描述
其中rc和rj分别是节点c和节点i的半径向量,σn是时间的单调递减函数,其精确形式并不重要。平方中的最后一项与输入X(n)和Mj(n)之间的距离梯度成正比:SOM存在许多变化,但以上内容涵盖了Kohonen提出的原始SOM的基本实现。
2.1、新颖性检测的SOM
图1在流程图中示出了使用SOM的新颖性检测的整个过程。在表示一组表示正常情况的输入特征向量后,SOM将在特征向量空间映射示例的分布。在这个阶段,输入向量相对于映射神经元的距离度量可以作为以后分类的信息。为此,执行以下修改。
在这里插入图片描述
正常SOM训练->修正的SOM比较->绘制标准类边界->阈值分类
2.2、修正的SOM比较
普通SOM的结构可以看作是中间层的距离函数,在输出层级联竞争传递函数。距离函数计算输入向量和神经元之间的距离(更具体地说是它们的权重),竞争层将输出获胜神经元的指数。在SOM训练结束时,假设有足够的训练时间,SOM中的神经元被称为映射到特征空间。在这里,不是只返回获胜的神经元,而是希望所有的神经元都返回。因此,用一个线性函数代替竞争层,然后训练向量再次通过SOM,而不需要重新训练SOM。
然后,所有的训练向量都被各自的获胜神经元标记。然后计算出胜出向量b(然后用图2中神经元的距离)。在每一个新的输入向量呈现时,SOM返回输入与拓扑中所有神经元之间的距离。
在给出一个输入向量后,SOM所有输出中的最小值代表最接近输入向量的神经元。通过比较向量(图2(d))到神经元中心相对于神经元边界(r)的距离,可以确定向量是否位于边界(r1)内(r2)。如果SOM的输出超出了这个边界值,它将被归类为故障轴承。边界外距离的大小也将表明问题的严重性。
在这里插入图片描述
2.3、绘制单个神经元的正常类边界
基于训练的系统的一个问题是,在训练的同时,训练数据的使用意味着所有的训练数据都被认为是一个有效的和有代表性的适合使用的输入。然而,与通常情况一样,并非所有的培训输入都具有代表性,有些输入可以被视为异常值。在为SOM的每个节点设置边界时,在SOM映射中包含离群值可能会导致严重的问题。一个维度中的离群值会迫使边界对于所有其他维度都过大。显然,这是不可取的。
还有一种可能是,分配给系统的神经元多于系统的实际需要。在这种情况下,备用节点(即尚未映射到任何数据的节点)的半径将为0。这样做,这些备用节点就不会意外地触发。
2.4、利用马氏距离(MD)进行阈值分割的最终分类
该方法的下一步是为SOM设置阈值进行分类。对于单传感器系统,这个阈值很容易确定。然而,对于多传感器环境,一种通用的方法更为有利。监控系统中的每个传感器都采用单独的SOM。在此设置下,每个SOM的输出都可以被视为输出向量。因此需要一种多维阈值方法。在本研究中,选择MD作为判别的差异性测度。
在训练了SOM之后,每个SOM将返回一些输出。这些可以合并到一个输出矩阵中,该矩阵详细说明了整个训练集的SOM的各个输出。这构成了系统对“正常”状态的了解。
对于每个单独的测试示例,不同som的合并输出表示输出空间中的向量,该向量可以与输出空间中的训练数据的位置进行比较,并且可以针对用作训练数据集的所有向量来计算当前向量的距离度量。
此操作使用MD度量执行。MD度量度量度量向量x与其平均向量mx之间的距离;通过其协方差矩阵Cxx进行缩放:从数学上讲,MD可以表示为:
在这里插入图片描述
其中Cxx是协方差矩阵,mx是x的平均向量。
r保持不变的MD表面是以mx为中心的椭球体:这考虑了特征值的缩放以及特征之间的相关性。这个星团映射了一个超椭球区域,它比球形星团更能跟踪数据的分布。

MD在集群中的分布遵循在这里插入图片描述
分布。对于具有n个传感器的系统,基于集群上99%的置信区间(α),可以使用
来计算截止值,这将给出一个将99%的数据封装在集群中的值,并可用作确定数据是否属于集群的阈值,因此,它是否可以被视为正常或错误的情况。文中给出的算例采用了这种方法。通过比较MD的对数分布与期望正态分布,验证了MD实际数据为卡方分布的前提。从图3可以看出,对于来自良好条件的训练数据,对数MD值表明它确实与正态分布紧密匹配,因此是卡方分布的。
在这里插入图片描述
三、统计特征集
在模式识别问题中,通常定义一组属性来辅助识别任务。这些属性通常被称为特征,对于各种变换(例如旋转、投影、缩放等)都是不变的。特征的数量,通常称为输入的维数,通常保持较小,以避免维数灾难。特征数目越多,需要的训练数据越多,才能得到有意义的分类结果。在MCM的情况下,由于明显的原因,很难获得训练数据。
在MCM中,原始数据通常以时间序列数据的形式提供,而不是图像。因此,这里的关键问题是缩放和漂移。后者可以很容易地处理一些可用的线性去趋势算法;另一方面,缩放问题可以处理某种形式的预处理。在这里,原始的时间序列数据就其输入功率进行归一化,并使其成为零均值。
在之前的作品中,傅里叶变换被选为[13-15]的一个点。然而,根据选择的N值,必须在分辨率和维度之间进行权衡。N值越高,在频域的分辨率越好,但同时为了在特征域中进行有意义的映射,所需的训练样本数也显著增加。这里基于频率带内的矩估计提取了两组新的特征:
(1)功率矩估计;
(2) 功率加权频率的矩估计。
3.1、功率矩估计
给定预处理时间序列中归一化PSD,Pxx,的N个点,x(n);Pxx,然后被分成L个段,其中L是所选的整数。对于每个段l,提取以下四个特征,这四个特征捕获了第l段中功率分布的描述性属性:
在这里插入图片描述
式中,N0表示第l段中的样本总数。上述特征在下文中称为特征集I。
3.2、功率加权频率矩估计
这第二组四个特征试图用功率加权时产生一阶到四阶频率矩的技术来描述频谱的频带。这使得相对高分辨率光谱的波段具有比使用光谱区域的简单平均值更高的精度。这反过来又以一种相对紧凑的方式给出了光谱区域行为的更具辨别力的图片。
可以计算每个频带的平均值、方差、偏度和峰度等特征,从而更全面地了解每个频带的频率分布。以下四个特征捕获了lth段中按功率加权的分布频率的描述性属性:
在这里插入图片描述
其中f(n)是Pxx(n)和Ki的对应频率,是该段中的总功率。
在这里插入图片描述
以上四个特征在下文中称为特征集II。
每个谱提取的特征总数为8L,(N/8L)为有效降维比。
3.3、规格化
当计算上述特征集时,机器中的负载变化会导致振动水平显著变化。这反过来又会影响振动光谱中峰值的大小。在没有某种形式的归一化的情况下获取功率谱的统计特征将极大地影响计算的特征。这些特征的重点在于描述光谱的形状,而不是幅度。进行以下标准化:
在这里插入图片描述
其中分母表示Pxx的方差:
4、实验数据集
在这项工作中,我们研究了所提出的基于特征集和新颖性检测SOM的CM方法的有用性。这两个数据集分别在第4.1节和第4.2节中详细说明。
4.1、旋转钻机数据
实验数据取自轴承试验台。图4显示了机器的布局,包括一个通过挠性联轴器驱动轴的直流电机,轴由两个垂直轴承座支撑。将一系列损坏的轴承插入其中一个止推块中,并使用两个加速度计测量水平面和垂直面上的合成振动。加速度计的输出通过电荷放大器反馈到拉夫伯勒声音图像DSP32 ADC卡(使用具有18 kHz截止值的低通滤波器),并在48 kHz下采样,给出轻微的过采样。机器以一系列不同的速度运行(总共16个,介于25和75 rev/s之间),每个速度下取10个时间序列。这一共给出了160个每个条件的例子,以及总共960个原始数据文件。
此数据集中有六种不同的条件。两种正常情况下,一种轴承处于全新状态(NO),另一种轴承处于轻微磨损(NW)状态。此外,还有四种故障情况:内圈故障(IR)、外圈故障(OR)、滚动元件故障(RE)和保持架故障(CA)。所有的故障条件都是诱发的,外圈和内圈的故障是由磨石造成的,滚动元件故障是由火花烧蚀造成的,保持架故障是由移除一段保持架造成的。
在这里插入图片描述
图5示出了六种不同情况下在相同速度下的振动轨迹的示例。每种故障条件都有不同的特征,内圈和外圈故障都有周期性信号;滚动体故障可能是周期性的,也可能不是周期性的,这取决于几个因素,包括滚动体的损坏程度、轴承的负荷,以及球在跑道上的轨迹。保持架故障倾向于表现出随机行为,同样取决于损伤程度和轴承载荷。
在这里插入图片描述
4.2、美国海军直升机数据
考虑的第二组数据是宾夕法尼亚州立大学(Pennsylvania State University)公开提供的Westland直升机数据集。这些数据来自美国海军韦斯特兰CH-46E直升机的船尾主传动装置。振动数据以103116Hz的频率在八个通道上采样。有八种情况可用;其中一种是正常情况,其余七种是变速器各部分出现的故障情况。对这些故障情况的描述如下:
行星轴承腐蚀。(#2)
输入小齿轮轴承腐蚀。(#3)
输入螺旋锥齿轮剥落。(#4)
螺旋输入小齿轮碎裂。(#5)
斜齿轮裂纹扩展。(#6)
集电齿轮裂纹扩展。(#7)
套筒轴裂纹扩展。(#8)
括号内的数字表示数据集中使用的条件编号约定,而#9表示正常条件。
在任何时候,变速器内只出现一个故障。振动数据通过放置在以下位置的八个不同加速计进行采样:
(1) 右舷发动机输入。
(2) 左舷发动机输入。
(3) 混合箱后侧。
(4) 右舷套筒轴。
(5) 右舷行星。
(6) 行星港口。
(7) 左舷套筒轴。
(8) 附件驱动。
图6显示了上述八种不同条件下的典型功率谱。这张图是使用左舷套筒轴上的加速计生成的。从人眼很难分辨出各种各样的缺点。所有原始信号都是在同一负载水平下采集的,在这种情况下,选择零负载功率。
两组数据来自美国海军数据。其中一组考虑0到18 kHz之间的1.5 kHz频带内的数据,而另一组使用5 kHz频段的0–50 kHz范围。对于每个波段,计算了第3节中详述的8个特征,给出了每个可用传感器的96个特征(8 × 12)和80个(8 × 10)。为每个传感器计算这组特征,从而为每个训练示例提供96 × 8个特征值或80 × 8个特征值。训练只使用正常数据,共有288个样本,而测试集有288个正常样本和1888个故障样本。没有一个测试集用于训练SOM。
在这里插入图片描述

5、实验和训练SOM
在训练SOM时,使用了一种简单的方法;对于每个数据集,仅使用直升机数据训练集中的288个示例对SOM进行训练,以识别数据的“正常”包络线,同样地,对于方位数据,仅使用320个示例(正常和轻微磨损类各160个)。一旦为每个传感器训练了一个SOM,测试数据就被呈现给联合网络,每个单独网络的结果存储在一个矩阵中。
对于每个测试示例,MD是根据训练集的输出值计算的。这反过来又返回了一个数字,它给出了所考虑的示例与整个训练集的相似性的度量。然后将该距离与自动和统计选择的阈值进行比较,以确定其是否构成故障。这一个参数由用户控制,提供了一个非常简单的系统,适合在生产型环境中使用。
对于这两个数据集,采取的方法是允许机器访问机器上所有可用传感器的数据。然后训练SOM识别正常运行条件。在测试阶段,来自每个传感器的数据被传递到每个单独的SOM。每个SOM返回传感器当前数据相对于已学习的训练包络的相似性度量。在接收到来自每个传感器的结果后,在考虑中的电流矢量和所使用的训练实例的簇之间计算马氏距离度量。这给出了一个单一的返回值,它是当前考虑中的示例和训练示例簇之间(dis)相似性的度量值,小值表示相似性,而大值表示不同。
培训针对不同数量的培训时段进行,通常为10、100、500和1000个培训时段。由于培训基本上是一个无监督的过程,因此不可能使用早期停止的验证集,这通常由监督培训方法采用,以确保绩效的普遍化。实验采用随机网格拓扑结构。这是因为初步实验的观察结果表明,这种拓扑结构能更好地映射到被测数据集。
6、结果
6.1、旋转钻机数据
表1-3显示了使用旋转钻机数据进行的三次实验的结果。除了输入特征集之外,这三个参数共享相同的som训练参数集。SOM采用随机网格类型(在一系列经验测试后发现,在考虑的数据中,这种方法表现最好),并随机初始化SOM权重值。这些实验重复使用比例因子从0.8到1.4,训练迭代次数从10到1000。由于有两个传感器,因此有两个维度,因此将ln(X2(α=0.99, n=2))=ln(9.21)=0.22 (X2是卡方分布)的阈值设置为对数MD输出的阈值。
表1显示了使用所有96个特征的分类结果,即特征集i和II。另一方面,表2和表3分别显示了使用特征集I和特征集II的结果。所有三个表格显示一致的高精度在96%到98%附近。
表4给出了使用从同一数据集中提取的32点FFT特征集进行分类的结果。分类算法始终显示出良好的效果。然而,在fault类上观察到的错误率略高。
图7(参照表1)示出了对数MD相对于样本数量的典型输出图。虚线显示了此特定示例中使用的截止标高。该图显示,正常和磨损的正常样本(前三分之一的样本)是紧密聚集的,而外圈故障和保持架故障样本正好位于阈值水平之上。更严重的故障,即内圈故障和滚动体故障,与正常情况相差甚远。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在实验中并没有从这些实验结果中找到关键因子。该方法对这些输入变量具有很强的鲁棒性。
6.2、韦斯特兰数据
使用韦斯特兰数据,对两个数据集中的每一个进行相同的实验。与旋转钻机数据一样,SOM针对不同的训练阶段(10、100、500和1000)以及各种不同的缩放因子(0.8、1.0、1.2、1.4)进行训练。三组实验分别使用了I、II和组合特征集。然而,这里的数据是在两个不同的类别,18和50千赫带宽。由于总共有8个传感器,n¼8;阈值被计算为ln(X2(α=0.99, n=8))=ln(20.206)=3.00(X2是卡方分布)。任何大于阈值的样本都被视为故障。
6.2.1、18 kHz带宽
表5显示了使用组合特征集从18khz特征集中获得的分类结果。正常分类和错误分类的分类准确率都在93%以上。这是很好的,但由于直升机在非常高的速度下运行,我们有兴趣通过使用更高的工作带宽来观察差异(参见第6.2.2节)。独立特征集I和特征II的结果被忽略了,因为它们提供的信息并不比这里提供的更多。
6.2.2、50 kHz带宽
以50khz带宽特征集进行了以下实验。所有实验设置参数与前几节相同。
表6记录了使用组合特征集的实验结果。比例因子设置为统一,历元数为100。类似地,表7和表8显示了使用单位比例因子进行的实验获得的结果,这些实验运行了100个时代,分别使用了特征集I和特征集II。在这个特定的例子中,特征集II没有表现良好。然而,在组合组(表6)中,性能没有下降。因此,SOM似乎能够从许多不同的特征集合中获得更好的性能。
图8再次示出了对数MD相对于示例数的典型输出图(参见表8)。在这里,前266个例子被归为普通类。虽然异常或错误的例子并没有很好地聚集在轴承数据的情况下,它们仍然与正常的例子有区别。同样,这些方法对比例因子和时代数也显示出了鲁棒性。
在这里插入图片描述
在这里插入图片描述
7、讨论和结论
提出了一种简单的基于SOM的新颖性检测方法和一种新的统计特征提取技术。这项提议已经用两个完全不同的实验装置和不同数量的传感器进行了测试。这两组结果都表明,即使在分类器从未见过任何错误训练示例的情况下,检测异常的精确度都很高。也有报告指出,识别正常类别的准确性稍低;但是,如果使用更具代表性的数据集进行培训,这一点可以得到改善。改进这一点的其他方法还包括预训练异常值去除等方法。
韦斯特兰直升机数据的一个重要观察是,使用新的统计特征集,选择的频率范围必须能够覆盖足够宽的带宽来捕获分类信息。在18khz数据集中,平均达到93%,而如果频率提取范围扩展到50khz,性能将进一步提高到大约99%,特别是对于故障类。这个数字可以通过调整阈值进一步微调。
虽然这里的例子只代表了一个双类识别问题,但是所提出的方法可以扩展到多类场景。总之,作者提出了一种简单而鲁棒的新颖性检测方法,适用于工业状态监测问题。新提出的特性在基准数据集方面也被证明是有效的。降维后的光谱特征能够保留正确分类所需的大部分信息。
致谢
作者要感谢英国格拉斯哥的威尔泵业有限公司、宾夕法尼亚州立大学和美国海军同意将各自的数据集用于这项工作。这项工作是通过下列供资机构实现的:
海外研究生(ORS)和利物浦大学(University of Liverpool for M.L.D.Wong)。
英国生物技术与生物科学研究委员会(BBSRC),L.B.Jack。作者还想感谢匿名裁判的宝贵意见。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值