深度学习跑模型,关于电脑出现GPU0和1?

不知道有没有小伙伴出现过这样的困扰?
笔记本电脑打开任务管理器后,发现自己的游戏本明明是独立显卡,比如我的RTX4060,特别是在跑深度学习模型时,指定device为cuda:0,进程中显示独显GPU1没什么利用率,而核显一直在很高的利用?甚至代码还会报错,提示没有可用的CUDA?
在这里插入图片描述
其实,笔记本电脑和台式机的工作模式不完全一样。
台式机:是独立显卡加载完图像,直接送到显示器;
而笔记本会是:独立显卡–>核显–>最后才会到显示器。
那这样的话,你的爱机的性能当然受影响啦!
我自己的拯救者Y9000P买回来就是觉得哪里不丝滑,原来问题就出在这里。
在LEGION ZONE中开启独显直连功能后(每个品牌的不一样):
在这里插入图片描述

可以看到只有一个独立显卡作为GPU0在工作了。
在这里插入图片描述

### 笔记本使用外接GPU的方法配置教程 #### 一、硬件准备 为了使笔记本能够利用外部图形处理单元(GPU),通常需要借助特定的设备——eGPU外壳。该装置通过高速接口(如Thunderbolt 3/4)连接至笔记本电脑,从而允许安装全尺寸桌面级显卡。 #### 二、软件环境搭建 对于Linux操作系统而言,在Ubuntu环境下设置外接GPU涉及几个重要方面: - **驱动程序安装** 确保已正确安装适用于所选NVIDIA GPU的官方闭源驱动版本[^1]。可以通过`Additional Drivers`工具来简化这一过程;也可以手动下载并编译最新版CUDA Toolkit以及相应的cuDNN库文件。 - **Kubernetes中的优化措施** 当目标是在容器化环境中充分利用多张GPU资源时,则可以考虑采用NVIDIA Multi Process Service (MPS)。这有助于提高作业间的资源共享效率,并减少上下文切换带来的性能损耗。 ```bash sudo apt-get update && sudo apt-get install nvidia-driver-<version> ``` #### 三、解决显示输出问题 针对部分用户反馈存在HDMI无信号的情况,建议尝试如下方案: 如果当前使用的发行版为较旧版本(例如Ubuntu 20.04 LTS),可能由于内核版本过低而导致兼容性不佳。因此推荐先完成系统更新操作后再做进一步排查[^2]。 ```bash do-release-upgrade ``` 另外值得注意的是,某些情况下即使完成了上述步骤仍无法正常工作,这时不妨检查BIOS设定里有关集成显卡与独立显卡之间的优先级选项是否合理分配给后者负责视频传输任务。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Andrew_Xzw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值