洛谷——P2637 第一次,第二次,成交

P2637 第一次,第二次,成交!

题目描述
因为奶牛们的节食运动给 FJ 余下了一大批干草无法处理,所以他准备要开一个拍卖会去出售他的干草。

他有 nn 批干草(每批大约 100100 捆)。他的客户有 mm 个,都是和他相邻的农夫。第 ii 名农夫会告诉 FJ 他会为 FJ 的每批干草付 p_ip
i

的钱。每个农夫都想买(也只想买)FJ 的一批草料。

为了确保农夫们不会互相嫉妒,所以 FJ 决定要以一个固定的价格出售他的草料。每一个出价比 FJ 的要价要高的农夫将会买到草料,余下的将会被拒绝购买。

请你帮助 FJ 找出能让他赚到最多的钱的最低的单批草料的售价。

输入格式
第一行:两个被空格隔开的整数,nn 和 mm。

第二行到第 m+1m+1 行:第 i+1i+1 行只包含一个整数:p_ip
i

输出格式
共一行,包含由空格隔开的两个整数:FJ 能出的每批草料的最低价格,以及他能赚到的最多的钱。

输入输出样例
输入 #1 复制
5 4
2
8
10
7
输出 #1 复制
7 21
说明/提示
FJ 有 55 批草料,44 个农夫想要购买。他们出价分别为:每批草料为 22,88,1010 和 77。

FJ 应该把价格设定为 77,这样会有 33 个农夫会付钱买草料,FJ 自己会挣到 2121 的钱。
对于 100%100% 的数据,1≤n≤1000,10001≤m≤1000,1≤p i ≤1,000,000。

#include<bits/stdc++.h>
using namespace std;
int a[1000002],m,n,i,j,s,p,ans,maxx;
int main(){
     cin>>n>>m;
     for(i=1;i<=m;i++){
         cin>>a[i];
     }
     for(i=1;i<=m;i++){
         p=a[i];
         s=0;
         for(j=1;j<=m;j++){
             if(a[j]>=p) s++;
             if(s>=n) s=n;
             if(p*s>maxx){
                 maxx=p*s;
                 ans=p;
             }
         }
     }
     cout<<ans<<" "<<maxx;
     return 0;
}
···
### 关于 P1746 离开中山路的 Python 解题思路 对于编号为P1746的题目《离开中山路》,该问题属于图论中的最短路径求解类问题。给定地图上的多个节点以及连接这些节点的道路长度,目标是从起点到终点找到一条总距离最小的路径[^1]。 #### 数据结构的选择 为了高效处理此类问题,可以采用邻接表来表示输入的地图数据。邻接表不仅节省空间而且便于快速访问相连边的信息。此外,在寻找最短路径过程中,优先队列(通常通过堆实现)能够帮助按照当前累计成本从小到大顺序遍历各个顶点[^2]。 #### Dijkstra算法的应用 针对本题特点——即不存在负权边的情况,Dijkstra算法是一个合适的选择。此方法从源结点出发逐步扩展已知区域直至覆盖整个网络;每次从未被收录进来的候选集中挑选具有最低估计代价者作为新的探索中心,并更新其相邻未访问过的邻居们的临时标记值直到抵达目的地为止[^3]。 下面是具体的Python代码实现: ```python import heapq def dijkstra(n, edges, start, end): graph = [[] for _ in range(n)] # 构建加权无向图的邻接列表形式 for u, v, w in edges: graph[u].append((v, w)) graph[v].append((u, w)) dist = [float('inf')] * n # 初始化所有节点的距离为无穷大 prev = [-1] * n # 记录前驱用于重建路径 pq = [(0, start)] # 将起始位置加入优先级队列并设初始距离为零 dist[start] = 0 while pq: d, node = heapq.heappop(pq) if node == end: # 提早终止条件:当到达终点时停止搜索 break if d > dist[node]: # 跳过已经找到了更优解的情形 continue for neighbor, weight in graph[node]: new_dist = d + weight if new_dist < dist[neighbor]: dist[neighbor] = new_dist prev[neighbor] = node heapq.heappush(pq, (new_dist, neighbor)) path = [] curr = end while curr != -1: path.append(curr) curr = prev[curr] return list(reversed(path)), dist[end] if __name__ == "__main__": N = ... # 输入城市数量N M = ... # 道路条数M roads = [...] # 所有道路信息[(A_i,B_i,C_i)...] S, T = ..., ... # 出发点S和目的地点T result_path, min_distance = dijkstra(N, roads, S-1, T-1) # 注意索引调整 print(f"The shortest distance is {min_distance}.") print("The optimal route:", " -> ".join(map(str,[i+1 for i in result_path]))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值