直接上题目:
题目描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
输入
输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。
输出
输出文件ball.out共一行,有一个整数,表示符合题意的方法数。
思路:
一道线性dp题
动态规划有三要素,必须记牢
第一要素:初始化
基本所有(并不是绝对的)动态规划题都要有初始化
第二要素:状态定义
极为重要的一步!
定义好状态后,才能明白怎么去转移状态
第三要素:状态转移方程
动态规划的灵魂所在 没有状态转移方程全部程序就一个初始化
三要素说完了,下一步就是code了
现在回到本题
这题的三要素是啥?
状态定义:(本蒟蒻还是太蒻了 这题只会用一个二维数组来做)
f[i][j]=传j次球后,传到第i个人有几种情况
初始化: f[1][0]=1;
解释:传0次球(其实就是还没传),还没传球就还在第一个人手里,所以=1
状态转移方程(最难的一步了):
画个图理解一下~
↓
那么状态转移方程就出来了:
f[i][j]=f[i-1][j-1]+f[i+1][j-1];
为什么j-1?
很好理解吧 就是传到i-1传了j-1次,传到i传了j次
注意! 特殊情况!
第n个人就没有i+1个人了,第1个人没有i-1个人
所以说
得考虑特殊情况
上AC代码:
# include <iostream>
# include <cstdio>
using namespace std;
# define int long long
int n,m,f[35][35];
signed main(){
scanf("%lld%lld",&n,&m);
f[1][0]=1;//初始化
for (int i=1;i<=m;i++){//为什么把思路里的j作为外层循环?因为特殊情况需要嵌套到外层循环里,被迫变为外层
for (int j=2;j<n;j++){
f[j][i]=f[j-1][i-1]+f[j+1][i-1];
}
f[1][i]=f[2][i-1]+f[n][i-1];//特殊情况
f[n][i]=f[n-1][i-1]+f[1][i-1];//特殊情况
}
printf("%lld",f[1][m]);//传了m次传到第1个人的情况数
return 0;
}
制作不易 如果看懂了可以点个赞哦~