质量相关
质量相关是指一个变量为质
,另一个变量为量
,这两个变量之间的相关。
如智商、学科分数、身高、体重等是表现为量的变量
男与女、优与劣、及格与不及格等是表现为质的变量
质与量的相关主要包括二列相关、点二列相关、多系列相关。
二列相关
当两个变量都是正态连续
变量,其中一个变量被人为地划分成二分变量(如按一定标推将属于正态连续变量的学科考试分数划分成及格与不及格,录取与未录取。把某一体育项目测验结果划分成通过与未通过,达标与末达标,把健康状况划分成好与差,等等),表示这两个变量之间的相关,称为二列相关。
二列相关的使用条件:
- 两个变量都是
连续变量
,且总体呈正态
分布,或总体接近正态分布,至少是单峰对称分布
。 - 两个变量之间是
线性
关系。 - 二分变量是
人为划分
的,其分界点应尽量靠近中值。
样本容量应当大于80。
R
=
X
p
ˉ
−
X
q
ˉ
σ
∗
p
q
Y
R = \frac{\mathrm{\bar{X_p} - \bar{X_q}}}{\mathrm{\sigma }} * \frac{\mathrm{pq}}{\mathrm{Y}}
R=σXpˉ−Xqˉ∗Ypq
例子
10名考生成绩如下,包括总分和一道问答题,试求该问答题的区分度(6分以上为通过,包括6分)
问答题,被人为的分成两类,通过和不通过,应求二列相关。
点二列相关
当两个变量其中一个是正态连续
性变量,另一个是真正的二分名义变量(例如,男与女,已婚和未婚,色盲与非色盲,生与死,等等),这时,表示这两个变量之间的相关,称为点二列相关。
R
=
X
p
ˉ
−
X
q
ˉ
σ
∗
p
q
R = \frac{\mathrm{\bar{X_p} - \bar{X_q}}}{\mathrm{\sigma }} * \sqrt{pq}
R=σXpˉ−Xqˉ∗pq
例子
有50道选择题,每题2分,有20人的总成绩和第五题的情况,第五题与总分的相关程度如何。
相关系数较高,第五题的情况与总分有一致性(区分度较高)