信息增益(ID3算法)


信息增益(ID3算法)——分类树,分类的标签是离散的,如 好/不好

信息熵

基本概念

信息熵(Information Entropy)是一个来自信息论的基本概念,由美国数学家克劳德·香农(Claude Shannon)在1948年引入,用于量化信息的不确定性和随机性。它是对一个信息系统无序程度或者信息的不确定性的一种度量。
在信息论中,熵描述了一条消息或一个信号所携带的信息量的期望值,即接收到该消息后所能消除的不确定性量。

具体来说,对于一个离散随机变量 X ,其可能取到的不同值为 x 1 , x 2 , . . . , x n ,且每个值 x i 出现的概率分别为 p ( x i ) ,信息熵 H ( X ) 定义为: 具体来说,对于一个离散随机变量X,其可能取到的不同值为x_1, x_2, ..., x_n,且每个值x_i出现的概率分别为p(x_i),信息熵H(X)定义为: 具体来说,对于一个离散随机变量X,其可能取到的不同值为x1,x2,...,xn,且每个值xi出现的概率分别为p(xi),信息熵H(X)定义为:

H ( X ) = − ∑ i = 1 n p ( x i ) log ⁡ 2 ( p ( x i ) ) H(X) = -\sum_{i=1}^{n} p(xi) \log_2(p(xi)) H(X)=i=1np(xi)log2(p(xi))

其中,log是以2为底的对数,这个选择使得信息熵的单位是比特(bit)。如果使用其他底数的对数,信息熵的单位会相应改变,但其量值的相对大小不变,因为对数函数的换底公式保证了这一点。

信息熵的几个关键特性包括:

  1. 非负性:信息熵总是非负的,当且仅当所有事件的发生概率相等时取得最大值(即系统完全无序时)。
  2. 对称性:信息熵不依赖于事件的标签,只依赖于它们的概率分布。
  3. 加性:如果有两个独立的随机变量X和Y,它们联合分布的信息熵等于各自熵的和。

例子

假设我们关心明天的天气预报,可能的结果有“晴天”、“雨天”、“阴天”三种,且已知历史数据显示:

  • 晴天的概率为 P(晴天) = 0.4
  • 雨天的概率为 P(雨天) = 0.3
  • 阴天的概率为 P(阴天) = 0.3

我们要计算这种天气预报的不确定性,也就是信息熵。

计算步骤

  1. 确定随机变量及其可能取值:随机变量为“明天的天气”,取值为“晴天”、“雨天”、“阴天”。

  2. 应用信息熵公式

H ( 天气 ) = − ∑ i p i log ⁡ 2 p i H(天气) = -\sum_{i} p_i \log_2 p_i H(天气)=ipilog2pi

其中, p i 是每种天气出现的概率。 其中, p_i 是每种天气出现的概率。 其中,pi是每种天气出现的概率。

  • 对于晴天: − 0.4 log ⁡ 2 0.4 对于晴天: -0.4 \log_2 0.4 对于晴天:0.4log20.4
  • 对于雨天: − 0.3 log ⁡ 2 0.3 对于雨天: -0.3 \log_2 0.3 对于雨天:0.3log20.3
  • 对于阴天: − 0.3 log ⁡ 2 0.3 对于阴天: -0.3 \log_2 0.3 对于阴天:0.3log20.3

具体计算

H ( 天气 ) = − ( 0.4 log ⁡ 2 0.4 + 0.3 log ⁡ 2 0.3 + 0.3 log ⁡ 2 0.3 ) H(天气) = - (0.4 \log_2 0.4 + 0.3 \log_2 0.3 + 0.3 \log_2 0.3) H(天气)=(0.4log20.4+0.3log20.3+0.3log20.3)

使用对数计算器进行计算(注意,这里的对数是以2为底的):

  • 0.4 log ⁡ 2 0.4 ≈ 0.4 × ( − 2.0 ) = − 0.8 0.4 \log_2 0.4 \approx 0.4 \times (-2.0) = -0.8 0.4log20.40.4×(2.0)=0.8
  • 0.3 log ⁡ 2 0.3 ≈ 0.3 × ( − 1.5849 ) = − 0.4755 0.3 \log_2 0.3 \approx 0.3 \times (-1.5849) = -0.4755 0.3log20.30.3×(1.5849)=0.4755
  • 0.3 log ⁡ 2 0.3 ≈ 0.3 × ( − 1.5849 ) = − 0.4755 0.3 \log_2 0.3 \approx 0.3 \times (-1.5849) = -0.4755 0.3log20.30.3×(1.5849)=0.4755

所以,

H ( 天气 ) = − ( − 0.8 − 0.4755 − 0.4755 ) H(天气) = -(-0.8 - 0.4755 - 0.4755) H(天气)=(0.80.47550.4755)
H ( 天气 ) = 1.751  bits H(天气) = 1.751 \text{ bits} H(天气)=1.751 bits

因此,在这个天气预报的例子中,明天天气的信息熵约为1.751比特。
这意味着,要准确地传达关于明天天气的信息,平均需要1.751比特的信息量。由于各种天气出现的概率较为均衡,不确定性较高,所以信息熵的值相对较大。

信息增益

基本概念

信息增益(Information Gain)是机器学习中特别是在决策树算法中用于特征选择的一个重要概念。它是基于信息论中的(Entropy)概念来衡量的,用于评估在给定一个特征的条件下,数据集的不确定性减少的程度。

具体来说,信息增益计算的是特征划分前数据集的熵与划分后各子集熵的加权平均之间的差值
熵反映了数据集的纯度或不确定性,熵越高表示数据集中类别的分布越混杂,不确定性越大。而信息增益表达了使用某个特征划分数据集后,整体的不确定性减少了多少。

公式表示

假设数据集 D 的熵为 H(D),在选择一个特征 A 进行划分后,数据集被划分为若干子集 ( D 1 , D 2 , . . . , D n ) (D_1, D_2, ..., D_n) (D1,D2,...,Dn)
每个子集的熵分别为 H ( D 1 ) , H ( D 2 ) , . . . , H ( D n ) H(D_1), H(D_2), ..., H(D_n) H(D1),H(D2),...,H(Dn)
并且子集 D i 中的数据占总数据的比例为 p i ,则特征 A 的信息增益 I G ( A ) 定义为: 并且子集 D_i 中的数据占总数据的比例为 p_i,则特征 A 的信息增益 IG(A) 定义为: 并且子集Di中的数据占总数据的比例为pi,则特征A的信息增益IG(A)定义为:

I G ( A ) = H ( D ) − ∑ i = 1 n p i ⋅ H ( D i ) IG(A) = H(D) - \sum_{i=1}^{n} p_i \cdot H(D_i) IG(A)=H(D)i=1npiH(Di)

其中:

  • H ( D ) 表示原始数据集的熵。 H(D) 表示原始数据集的熵。 H(D)表示原始数据集的熵。
  • H ( D i ) 表示第 i 个子集的熵。 H(D_i) 表示第 i 个子集的熵。 H(Di)表示第i个子集的熵。
  • p i 是子集 D i 占原数据集的比例。 p_i是子集 D_i占原数据集的比例。 pi是子集Di占原数据集的比例。

信息增益的意义

信息增益的值越大,说明使用这个特征进行划分后,数据集的不确定性减少得越多,即该特征对分类的贡献越大,有助于构建更纯净(即每个子集中的数据尽可能属于同一类别)的子集。在决策树构建过程中,通常会选择信息增益最大的特征作为当前节点的分裂特征,以达到最优的分类效果。

然而,信息增益方法倾向于选择具有大量值的特征,因为这类特征能够产生更多的子集,即使这些子集的纯度提升不大,也可能导致过拟合。为了解决这一问题,实践中经常使用信息增益比或基尼不纯度等替代方法。

例子

好的,让我们通过一个全新的例子来详细解释信息熵和信息增益的计算过程。假设我们有一个数据集,用于预测银行客户是否会购买一项保险产品。数据集中有两个特征:年龄(青年、中年、老年)和收入水平(低、中、高),以及目标变量“购买保险”(是、否)。

假设数据集如下:

年龄收入水平购买保险(是/否)人数
青年30人
青年20人
青年40人
青年10人
青年50人
青年5人
中年25人
中年35人
中年45人
中年15人
中年60人
中年10人
老年15人
老年45人
老年30人
老年30人
老年50人
老年20人

计算整个数据集的熵 H(D)

  • 总人数 = 30 + 20 + 40 + 10 + 50 + 5 + 25 + 35 + 45 + 15 + 60 + 10 + 15 + 45 + 30 + 30 + 50 + 20 = 535人
  • 购买保险的人数 = 30 + 40 + 50 + 25 + 45 + 60 + 15 + 30 + 50 = 345人
  • 不购买保险的人数 = 20 + 10 + 5 + 35 + 15 + 10 + 45 + 30 + 20 = 190人
  • 购买的概率 P ( 是 ) = 345 535 P(是) = \frac{345}{535} P()=535345
  • 不购买的概率 P ( 否 ) = 190 535 P(否) = \frac{190}{535} P()=535190

整个数据集的熵 H(D):
H ( D ) = − P ( 是 ) log ⁡ 2 P ( 是 ) − P ( 否 ) log ⁡ 2 P ( 否 ) H(D) = -P(是) \log_2 P(是) - P(否) \log_2 P(否) H(D)=P()log2P()P()log2P()

计算特征“年龄”的信息增益 IG(年龄)

首先,分别计算按年龄划分后的子集熵。

青年子集
  • 购买人数 = 30 + 40 + 50 = 120人
  • 不购买人数 = 20 + 10 + 5 = 35人
  • 购买概率 = 120 155 购买概率 = \frac{120}{155} 购买概率=155120
  • 不购买概率 = 35 155 不购买概率 = \frac{35}{155} 不购买概率=15535

青年子集的熵:
H ( 青年 ) = − 120 155 log ⁡ 2 120 155 − 35 155 log ⁡ 2 35 155 H(青年) = -\frac{120}{155} \log_2 \frac{120}{155} - \frac{35}{155} \log_2 \frac{35}{155} H(青年)=155120log215512015535log215535

中年子集
  • 购买人数 = 25 + 45 + 60 = 130人
  • 不购买人数 = 35 + 15 + 10 = 60人
  • 购买概率 = 130 190 购买概率 = \frac{130}{190} 购买概率=190130
  • 不购买概率 = 60 190 不购买概率 = \frac{60}{190} 不购买概率=19060

中年子集的熵:
H ( 中年 ) = − 130 190 log ⁡ 2 130 190 − 60 190 log ⁡ 2 60 190 H(中年) = -\frac{130}{190} \log_2 \frac{130}{190} - \frac{60}{190} \log_2 \frac{60}{190} H(中年)=190130log219013019060log219060

老年子集
  • 购买人数 = 15 + 30 + 50 = 95人
  • 不购买人数 = 45 + 30 + 20 = 95人
  • 购买概率 = 95 190 购买概率 = \frac{95}{190} 购买概率=19095
  • 不购买概率 = 95 190 不购买概率 = \frac{95}{190} 不购买概率=19095

老年子集的熵:
H ( 老年 ) = − 95 190 log ⁡ 2 95 190 − 95 190 log ⁡ 2 95 190 H(老年) = -\frac{95}{190} \log_2 \frac{95}{190} - \frac{95}{190} \log_2 \frac{95}{190} H(老年)=19095log21909519095log219095

信息增益 (IG(年龄))

I G ( A ) = H ( D ) − ∑ i = 1 n p i ⋅ H ( D i ) I G ( 年龄 ) = H ( D ) − ( 155 535 H ( 青年 ) + 190 535 H ( 中年 ) + 190 535 H ( 老年 ) ) IG(A) = H(D) - \sum_{i=1}^{n} p_i \cdot H(D_i) \\ IG(年龄) = H(D) - \left( \frac{155}{535} H(青年) + \frac{190}{535} H(中年) + \frac{190}{535} H(老年) \right) IG(A)=H(D)i=1npiH(Di)IG(年龄)=H(D)(535155H(青年)+535190H(中年)+535190H(老年))

通过以上步骤,可以计算出特征“年龄” 在决定是否购买保险方面的信息增益。这个值将告诉我们,根据年龄划分数据集能多大程度上减少不确定性。

ID3算法进行剪枝

假设数据集如下:

OutlookTemperatureHumidityWindPlay
SunnyHotHighWeakNo
SunnyHotNormalStrongNo
OvercastHotHighWeakYes
RainMildHighWeakYes
RainCoolNormalWeakYes
RainCoolNormalStrongNo
OvercastCoolNormalStrongYes
SunnyMildHighWeakNo
SunnyCoolNormalWeakYes
RainMildNormalWeakYes
SunnyMildNormalStrongYes
OvercastMildHighStrongYes
OvercastHotNormalWeakYes
RainMildHighStrongNo

目标:预测Play(是否适合户外活动,Yes/No)

ID3算法步骤及计算:

1. 计算整个数据集的信息熵 H(D)

首先,计算所有Play类别(Yes/No)的信息熵。假设有 (n) 个Yes,(m) 个No,则总样本数 (N = n + m)。

H ( D ) = − ( n N log ⁡ 2 n N + m N log ⁡ 2 m N ) H(D) = -\left(\frac{n}{N} \log_2\frac{n}{N} + \frac{m}{N} \log_2\frac{m}{N}\right) H(D)=(Nnlog2Nn+Nmlog2Nm)

2. 计算各特征的信息增益

对于每个特征(Outlook, Temperature, Humidity, Wind),我们需要计算它对数据集划分后信息熵的减少量,即信息增益。

I G ( F e a t u r e ) = H ( D ) − ∑ v ∈ V a l u e s ∣ D v ∣ ∣ D ∣ H ( D v ) IG(Feature) = H(D) - \sum_{v \in Values} \frac{|D_v|}{|D|} H(D_v) IG(Feature)=H(D)vValuesDDvH(Dv)

其中, V a l u e s 是特征的所有可能取值, D v 是特征取值为 v 的子集, ∣ D ∣ 和 ∣ D v ∣ 分别是总样本数和子集的样本数。 其中,Values 是特征的所有可能取值,D_v是特征取值为 v的子集,|D| 和 |D_v| 分别是总样本数和子集的样本数。 其中,Values是特征的所有可能取值,Dv是特征取值为v的子集,DDv分别是总样本数和子集的样本数。

3. 选择信息增益最大的特征作为根节点

根据计算出的各个特征的信息增益,选择信息增益最大的特征作为树的第一个分支节点。

4. 递归地为每个分支节点重复步骤1-3

继续在每个子集中选择信息增益最大的特征进行划分,直到满足停止条件(如子集中所有实例都属于同一类别,或达到预设的最大深度等)。

示例计算(简化示例,仅计算Outlook特征的信息增益):

假设我们仅计算特征Outlook的信息增益,Outlook有三个取值:Sunny, Overcast, Rain。

  • Sunny下的Play类别分布:2个No,3个Yes。
  • Overcast下的Play类别分布:4个Yes,0个No。
  • Rain下的Play类别分布:3个Yes,3个No。

首先,计算整个数据集的信息熵 H(D)。整个数据集中Yes有9个,No有5个,共14个样本。

H ( D ) = − ( 9 14 log ⁡ 2 9 14 + 5 14 log ⁡ 2 5 14 ) H(D) = -\left(\frac{9}{14} \log_2\frac{9}{14} + \frac{5}{14} \log_2\frac{5}{14}\right) H(D)=(149log2149+145log2145)

接着,计算Outlook的信息增益:

  • Sunny的信息熵 H(Sunny)。
    • H ( S u n n y ) = − ( 2 5 log ⁡ 2 2 5 + 3 5 log ⁡ 2 3 5 ) H(Sunny) = -\left(\frac{2}{5} \log_2\frac{2}{5} + \frac{3}{5} \log_2\frac{3}{5}\right) H(Sunny)=(52log252+53log253)
  • Overcast的信息熵 H(Overcast)。
    • H ( O v e r c a s t ) = − ( 0 4 log ⁡ 2 0 4 + 4 4 log ⁡ 2 4 4 ) H(Overcast) = -\left(\frac{0}{4} \log_2\frac{0}{4} + \frac{4}{4} \log_2\frac{4}{4}\right) H(Overcast)=(40log240+44log244)
  • Rain的信息熵 H(Rain)。
    • H ( R a i n ) = − ( 3 6 log ⁡ 2 3 6 + 3 6 log ⁡ 2 3 6 ) H(Rain) = -\left(\frac{3}{6} \log_2\frac{3}{6} + \frac{3}{6} \log_2\frac{3}{6}\right) H(Rain)=(63log263+63log263)

I G ( O u t l o o k ) = H ( D ) − ( 5 14 H ( S u n n y ) + 4 14 H ( O v e r c a s t ) + 5 14 H ( R a i n ) ) IG(Outlook) = H(D) - \left(\frac{5}{14} H(Sunny) + \frac{4}{14} H(Overcast) + \frac{5}{14} H(Rain)\right) IG(Outlook)=H(D)(145H(Sunny)+144H(Overcast)+145H(Rain))

完成所有特征的信息增益计算后,假设Outlook的信息增益最大,则我们选择Outlook作为根节点开始构建决策树,并在Sunny、Overcast、Rain的子集中继续递归应用ID3算法,直至满足停止条件。

最终,我们会得到一个决策树模型,该模型能够根据天气情况预测是否适合户外活动。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值