不完整跨视图哈希表示学习方法(Robust Uncorrelated Cross-View Hashing,简称RUCMH)

不完整跨视图哈希表示学习方法(Robust Uncorrelated Cross-View Hashing,简称RUCMH)是一种专为多模态或多视图数据设计的哈希学习方法。

这种方法旨在通过构建散列码(即,二进制向量),在保持各视图间语义相似性的同时,有效应对数据不完整性问题,即不同视图间可能存在信息缺失的情况

RUCMH的核心目标是学习到的哈希码不仅能够保持视图内的相似度,还能跨视图保持一致性,同时降低不同视图间的冗余信息。下面是RUCMH方法的一些关键特点和组成部分:

核心思想

  1. 鲁棒性与不相关性:RUCMH强调在哈希学习过程中考虑到数据的不完整性,即某些样本可能只存在于部分视图中。为了实现这一点,它引入了鲁棒性约束来确保即便在某视图数据缺失的情况下,哈希编码仍能保持良好的性能。同时,通过不相关性约束来减少不同视图哈希码之间的冗余,使得每个视图的哈希码都能独立携带信息。

  2. 跨视图一致性:为了保证不同视图之间的语义一致性,RUCMH利用相似性保持策略,确保同一对象在不同视图下的哈希码尽可能接近。这通常通过最大化视图间哈希码的相关性或者最小化它们之间的距离来实现。

  3. 散列函数学习:该方法通常包括设计一个优化目标函数,该目标函数结合了上述几个关键因素,例如视图内相似度保持、视图间一致性、散列码的不相关性以及可能的正则化项来控制模型复杂度。优化过程通常采用迭代算法,如交替最小化或梯度下降法,来学习散列函数。

方法框架

  • 哈希码学习:为每个视图学习一个映射函数将高维特征转换为低维的二进制哈希码。
  • 视图间对齐:通过某种相似性度量(如余弦相似度或欧氏距离)确保不同视图的哈希码对于同一对象表现出高度的一致性。
  • 不相关性促进:加入正交性或不相关性约束,确保不同视图的哈希码在携带信息时互补而非重复
  • 鲁棒性处理:通过设计损失函数或正则项来增强模型对数据缺失情况的容忍度,确保即使在某些视图数据缺失的情况下也能保持良好的哈希性能。

应用场景

RUCMH这类方法广泛应用于跨媒体检索、多模态数据分析、社交网络分析等领域,其中数据往往以多种类型(如文本、图像、音频)存在,且不同模态间存在信息互补与不完全对齐的情况。

总结

RUCMH是一种先进的哈希学习技术,旨在解决跨视图数据的不完整性问题,同时保持高效的跨模态检索性能。通过整合鲁棒性、不相关性及跨视图一致性等关键特性,RUCMH能够为多模态数据提供一种有效的索引和检索机制,尤其是在大规模数据集中。然而,具体实现细节和算法性能会根据实际应用场景和数据特性有所不同,需要通过实验不断调优。

例子

示例背景

假设我们有两类数据:图像和文本,分别代表两个视图,目标是在这两个视图中为每个对象生成一致的哈希码同时处理数据不完整的问题(比如某些对象只有图像或文本信息)。

计算步骤与公式简化示例

1. 定义哈希函数与目标函数
  • 假设图像视图文本视图的原始特征向量分别为 (I) 和 (T),目标是学习两个映射函数 f I : I → H I f_I: I \rightarrow H_I fI:IHI f T : T → H T f_T: T \rightarrow H_T fT:THT,其中 H I H_I HI H T H_T HT 分别为图像文本的哈希码,均为二进制向量
2. 相似性保持与跨视图对齐
  • 相似性保持:对于每个视图,我们希望同类样本的哈希码接近不同类样本的哈希码远离。如果 y i j y_{ij} yij 表示样本 (i) 和 (j) 是否属于同一类别,可以定义如下损失项:
    L s i m = ∑ i , j y i j ⋅ HammingLoss ( h i , h j ) + ( 1 − y i j ) ⋅ max ⁡ ( 0 , m − HammingLoss ( h i , h j ) ) L_{sim} = \sum_{i,j} y_{ij} \cdot \text{HammingLoss}(h_i, h_j) + (1-y_{ij}) \cdot \max(0, m-\text{HammingLoss}(h_i, h_j)) Lsim=i,jyijHammingLoss(hi,hj)+(1yij)max(0,mHammingLoss(hi,hj))
    其中, HammingLoss \text{HammingLoss} HammingLoss 表示汉明距离,(m) 是一个阈值。

  • 跨视图对齐:对于同时拥有图像和文本数据的样本,我们希望它们的哈希码尽可能一致。定义跨视图对齐损失为:
    L a l i g n = ∑ i HammingLoss ( H I ( i ) , H T ( i ) ) L_{align} = \sum_{i} \text{HammingLoss}(H_I(i), H_T(i)) Lalign=iHammingLoss(HI(i),HT(i))

3. 不相关性促进
  • 为了确保不同视图的哈希码携带独立信息,可以添加一个正则化项来最小化视图间哈希码的相互信息或相关性:
    L u n c o r r = ∣ ∣ 1 N ∑ i H I ( i ) ⋅ H T ( i ) T − I ∣ ∣ F 2 L_{uncorr} = \left|\left| \frac{1}{N} \sum_{i} H_I(i) \cdot H_T(i)^T - I \right|\right|_F^2 Luncorr= N1iHI(i)HT(i)TI F2
    其中, ∣ ∣ ⋅ ∣ ∣ F ||\cdot||_F ∣∣F 是Frobenius范数,(I) 是单位矩阵,表示理想的不相关状态。
4. 鲁棒性处理
  • 对于不完整数据,可以通过在损失函数中引入指示变量 m i m_i mi 来标记数据的存在与否,并调整相似性保持和对齐损失,忽略不存在视图的数据对:
    L r o b u s t = ∑ i , j m i j ⋅ SimilarityTerm + ∑ i m i ⋅ AlignmentTerm L_{robust} = \sum_{i,j} m_{ij} \cdot \text{SimilarityTerm} + \sum_{i} m_i \cdot \text{AlignmentTerm} Lrobust=i,jmijSimilarityTerm+imiAlignmentTerm
5. 综合损失函数
  • 最终的损失函数可能是上述各项的组合,并加上适当的正则化项以避免过拟合:
    L t o t a l = L s i m + λ a l i g n L a l i g n + λ u n c o r r L u n c o r r + λ r e g R ( θ ) L_{total} = L_{sim} + \lambda_{align} L_{align} + \lambda_{uncorr} L_{uncorr} + \lambda_{reg} R(\theta) Ltotal=Lsim+λalignLalign+λuncorrLuncorr+λregR(θ)
    这里, λ a l i g n , λ u n c o r r , λ r e g \lambda_{align}, \lambda_{uncorr}, \lambda_{reg} λalign,λuncorr,λreg 是超参数,用于平衡不同损失项的重要性, R ( θ ) R(\theta) R(θ) 是模型参数 θ \theta θ 的正则化项。

计算与优化

  • 通过梯度下降或更高级的优化算法(如Adam、SGD等)来最小化上述综合损失函数 L t o t a l L_{total} Ltotal,以此学习哈希函数 f I f_I fI f T f_T fT。优化过程可能需要多次迭代,每次迭代更新模型参数,直至达到预设的停止准则(如损失不再显著降低或达到最大迭代次数)。

请注意,上述示例是高度简化的,实际应用中的RUCMH算法会更加复杂,可能包括更多的正则化项、更精细的损失函数设计,以及对特定领域知识的融入。此外,具体的公式和计算步骤需要根据实际数据集和任务需求进行调整。

  • 27
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值