多模态子空间聚类
引言
多模态子空间聚类(Multimodal Subspace Clustering, MSC)是一种用于处理来自不同数据源或表示的多视图数据的高级聚类技术。
在现实世界中,数据经常以多种形式存在,如图像、文本、音频等,这些不同的数据类型或视图携带了关于同一对象或场景的互补信息。
MSC 的目标是在这些不同的模态或视图中发现共享的子空间结构,从而更准确地理解和聚类数据。
基本原理
在多模态子空间聚类中,我们假定每个模态(或视图)的数据都位于不同的子空间中,但这些子空间在某种意义上是相关的,即它们共享相同的聚类结构
。
MSC 的核心挑战在于如何从这些不同的模态中融合信息
,以发现共同的聚类结构。
数学模型
设我们有 M M M 个模态的数据 X ( m ) \mathbf{X}^{(m)} X(m),其中 m = 1 , 2 , … , M m = 1, 2, \ldots, M m=1,2,…,M,每个模态的数据集包含相同数量的数据点,但可能有不同的特征维度。
我们的目标是找到一个共同的表示矩阵 Z \mathbf{Z} Z,它能够反映所有模态中数据点之间的关系。
目标函数
MSC 的目标函数通常包含两个主要组成部分:
一个是表示矩阵的重建误差,另一个是跨模态一致性。一个典型的目标函数可以表示为:
min Z , E ( m ) ∑ m = 1 M ∥ X ( m ) − X ( m ) Z ∥ F 2 + β ∑ m = 1 M ∥ E ( m ) ∥ 1 + λ ∑ m ≠ m ′ d ( Z ( m ) , Z ( m ′ ) ) \min_{\mathbf{Z},\mathbf{E}^{(m)}} \sum_{m=1}^{M} \left\| \mathbf{X}^{(m)} - \mathbf{X}^{(m)}\mathbf{Z} \right\|_F^2 + \beta \sum_{m=1}^{M} \left\| \mathbf{E}^{(m)} \right\|_1 + \lambda \sum_{m \neq m'} d(\mathbf{Z}^{(m)}, \mathbf{Z}^{(m')}) Z,E(m)minm=1∑M X(m)−X(m)Z F2+βm=1∑M E(m) 1+λm=m′∑d(Z(m),Z(m′))
这里:
-
Z
\mathbf{Z}
Z 是
表示矩阵
,它在所有模态中共享, Z ( m ) \mathbf{Z}^{(m)} Z(m) 表示 Z \mathbf{Z} Z 在模态 m m m 中的使用; -
E
(
m
)
\mathbf{E}^{(m)}
E(m) 是模态
m
m
m 的
误差矩阵
,用于捕捉噪声或异常值; - ∥ ⋅ ∥ F \left\| \cdot \right\|_F ∥⋅∥F 是 Frobenius 范数,衡量矩阵元素的平方和的平方根;
-
∥
⋅
∥
1
\left\| \cdot \right\|_1
∥⋅∥1 是 L1 范数,
用于促进稀疏性
,提高对噪声的鲁棒性; - β \beta β 和 λ \lambda λ 是正则化参数,用于平衡重建误差、误差矩阵的稀疏性和模态间的一致性;
-
d
(
Z
(
m
)
,
Z
(
m
′
)
)
d(\mathbf{Z}^{(m)}, \mathbf{Z}^{(m')})
d(Z(m),Z(m′)) 是
度量矩阵
Z ( m ) \mathbf{Z}^{(m)} Z(m) 和 Z ( m ′ ) \mathbf{Z}^{(m')} Z(m′) 之间的差异,可以是任何适合的矩阵距离或相似度度量,如核距离、Frobenius 距离或谱距离。
约束条件
为了确保解的合理性,多模态子空间聚类方法可能包含一些约束条件,例如:
Z 1 = 1 , Z ≥ 0 \mathbf{Z}\mathbf{1} = \mathbf{1}, \quad \mathbf{Z} \geq 0 Z1=1,Z≥0
这里:
-
1
\mathbf{1}
1 是一个全一向量,确保
Z
\mathbf{Z}
Z 的每行和为 1,反映
数据点的表示是通过其他数据点的线性组合给出的;
- Z ≥ 0 \mathbf{Z} \geq 0 Z≥0 确保表示矩阵的元素是非负的。
聚类过程
一旦找到共同的表示矩阵 Z \mathbf{Z} Z,下一步通常是构建相似度矩阵 W \mathbf{W} W,然后使用谱聚类算法对数据点进行聚类。
谱聚类涉及构建图拉普拉斯矩阵 L \mathbf{L} L,然后计算 L \mathbf{L} L 的特征向量,并使用 k k k-means 或其他聚类算法对特征向量进行聚类。
L = D − W \mathbf{L} = \mathbf{D} - \mathbf{W} L=D−W
其中 D \mathbf{D} D 是度矩阵,其对角线元素为 W \mathbf{W} W 的行和。
结论
多模态子空间聚类是一种强大的数据聚类技术,它能够从不同模态的数据中抽取共享的子空间结构,从而更准确地理解和聚类数据。通过融合多个模态的信息,MSC 能够提高聚类的准确性和鲁棒性,尤其在处理复杂、多源和异构数据时表现突出。