似然函数(Likelihood Function)

似然函数(Likelihood Function)是统计学中的一个重要概念,用于衡量一组观察数据在假设的不同参数值下发生的可能性

在参数估计中,极大似然估计(Maximum Likelihood Estimation, MLE)是一个常用的技术,它基于似然函数来找到最有可能产生观察数据的参数值。

下面我们将详细探讨似然函数的概念、公式及其在极大似然估计中的应用。

似然函数定义

假设我们有一组独立同分布(IID)的观察数据 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn,它们的分布由参数 θ \theta θ 决定。

似然函数 L ( θ ∣ x 1 , x 2 , … , x n ) L(\theta|x_1, x_2, \ldots, x_n) L(θx1,x2,,xn) 定义为当参数为 θ \theta θ 时,数据集 ( x 1 , x 2 , … , x n ) (x_1, x_2, \ldots, x_n) (x1,x2,,xn) 发生的概率。

然而,在似然函数的上下文中,我们考虑参数 θ \theta θ 为变量,而观察数据作为固定值。

似然函数的公式

对于连续型随机变量,似然函数可以表示为:

L ( θ ∣ x 1 , x 2 , … , x n ) = f ( x 1 ∣ θ ) f ( x 2 ∣ θ ) ⋯ f ( x n ∣ θ ) = ∏ i = 1 n f ( x i ∣ θ ) L(\theta|x_1, x_2, \ldots, x_n) = f(x_1|\theta)f(x_2|\theta)\cdots f(x_n|\theta) = \prod_{i=1}^{n}f(x_i|\theta) L(θx1,x2,,xn)=f(x1θ)f(x2θ)f(xnθ)=i=1nf(xiθ)

其中, f ( x i ∣ θ ) f(x_i|\theta) f(xiθ) 是观察 x i x_i xi 在参数 θ \theta θ 下的概率密度函数。

对于离散型随机变量,似然函数可以表示为:

L ( θ ∣ x 1 , x 2 , … , x n ) = P ( X 1 = x 1 ∣ θ ) P ( X 2 = x 2 ∣ θ ) ⋯ P ( X n = x n ∣ θ ) = ∏ i = 1 n P ( X i = x i ∣ θ ) L(\theta|x_1, x_2, \ldots, x_n) = P(X_1=x_1|\theta)P(X_2=x_2|\theta)\cdots P(X_n=x_n|\theta) = \prod_{i=1}^{n}P(X_i=x_i|\theta) L(θx1,x2,,xn)=P(X1=x1θ)P(X2=x2θ)P(Xn=xnθ)=i=1nP(Xi=xiθ)

其中, P ( X i = x i ∣ θ ) P(X_i=x_i|\theta) P(Xi=xiθ) 是观察 x i x_i xi 在参数 θ \theta θ 下的概率质量函数。

极大似然估计

极大似然估计的目标是找到参数 θ \theta θ 的值,使得似然函数 L ( θ ∣ x 1 , x 2 , … , x n ) L(\theta|x_1, x_2, \ldots, x_n) L(θx1,x2,,xn) 达到最大。这个参数值记作 θ ^ \hat{\theta} θ^

目标公式

极大似然估计的数学表达式可以写作:

θ ^ = arg ⁡ max ⁡ θ L ( θ ∣ x 1 , x 2 , … , x n ) \hat{\theta} = \arg\max_\theta L(\theta|x_1, x_2, \ldots, x_n) θ^=argθmaxL(θx1,x2,,xn)

公式的应用

为了简化计算,通常会使用似然函数的对数形式,因为对数函数是单调递增的,所以极大化似然函数等价于极大化其对数。对数似然函数定义为:

log ⁡ L ( θ ∣ x 1 , x 2 , … , x n ) = ∑ i = 1 n log ⁡ ( f ( x i ∣ θ ) ) \log L(\theta|x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n}\log(f(x_i|\theta)) logL(θx1,x2,,xn)=i=1nlog(f(xiθ))

接下来,我们对 log ⁡ L ( θ ∣ x 1 , x 2 , … , x n ) \log L(\theta|x_1, x_2, \ldots, x_n) logL(θx1,x2,,xn) 关于 θ \theta θ 求导数,并设导数等于零来找到极值点:

d d θ log ⁡ L ( θ ∣ x 1 , x 2 , … , x n ) = 0 \frac{d}{d\theta}\log L(\theta|x_1, x_2, \ldots, x_n) = 0 dθdlogL(θx1,x2,,xn)=0

解这个方程就可以找到极大似然估计 θ ^ \hat{\theta} θ^

示例

伯努利试验为例,假设每次试验成功的概率为 θ \theta θ,我们观察到了 k k k 次成功,共进行了 n n n 次试验。似然函数为:

L ( θ ∣ x = k ) = ( n k ) θ k ( 1 − θ ) n − k L(\theta|x=k) = \binom{n}{k}\theta^k(1-\theta)^{n-k} L(θx=k)=(kn)θk(1θ)nk

对数似然函数为:

log ⁡ L ( θ ∣ x = k ) = k log ⁡ ( θ ) + ( n − k ) log ⁡ ( 1 − θ ) \log L(\theta|x=k) = k\log(\theta) + (n-k)\log(1-\theta) logL(θx=k)=klog(θ)+(nk)log(1θ)

θ \theta θ 求导数并设为零:

k θ − n − k 1 − θ = 0 \frac{k}{\theta} - \frac{n-k}{1-\theta} = 0 θk1θnk=0

解得极大似然估计 θ ^ = k n \hat{\theta} = \frac{k}{n} θ^=nk

以上就是似然函数和极大似然估计的详细介绍,包括它们的定义、公式、目标以及如何在实际问题中应用。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值