核稀疏子空间聚类方法(Kernel Sparse Subspace Clustering, KSSC)
引言
核稀疏子空间聚类(KSSC)是稀疏子空间聚类
(SSC)的一种扩展,旨在处理非线性可分的数据
。
通过引入核技巧,KSSC 能够在高维特征空间中找到数据点的稀疏表示
,即使在原始特征空间中数据点可能处于不同的低维子空间中。
这种方法特别适合于处理具有复杂结构的高维数据。
基础理论
在 SSC 中,数据点的稀疏表示
是在原始特征空间中计算的。
然而,在许多情况下,数据点的真实关系可能在高维空间中更加明显,尤其是在数据点分布于非线性子空间
中时。
核技巧允许我们在一个更高维的特征空间中操作,而无需显式地计算这个空间中的特征映射。
核函数
核函数
k
(
⋅
,
⋅
)
k(\cdot, \cdot)
k(⋅,⋅) 是一种度量两个数据点在高维特征空间中相似度的函数
,而不必显式地知道特征映射。
常见的核函数包括高斯核、多项式核、线性核等。
KSSC 的数学模型
对于给定的数据集
X
=
{
x
1
,
x
2
,
…
,
x
N
}
\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\}
X={x1,x2,…,xN},其中
x
i
∈
R
d
\mathbf{x}_i \in \mathbb{R}^d
xi∈Rd,KSSC 的目标是找到一个稀疏表示矩阵
Z
\mathbf{Z}
Z,使得每个数据点
x
i
\mathbf{x}_i
xi 都可以表示为其余数据点在高维特征空间中的线性组合
。数学上,这可以表示为以下优化问题:
min Z 1 2 ∑ i = 1 N ∥ ϕ ( x i ) − ∑ j = 1 N k ( x i , x j ) z i j ϕ ( x j ) ∥ 2 + λ ∑ i = 1 N ∑ j = 1 N ∣ z i j ∣ \min_{\mathbf{Z}} \frac{1}{2} \sum_{i=1}^N \left\| \phi(\mathbf{x}_i) - \sum_{j=1}^N k(\mathbf{x}_i, \mathbf{x}_j) z_{ij} \phi(\mathbf{x}_j) \right\|^2 + \lambda \sum_{i=1}^N \sum_{j=1}^N |z_{ij}| Zmin21i=1∑N ϕ(xi)−j=1∑Nk(xi,xj)zijϕ(xj) 2+λi=1∑Nj=1∑N∣zij∣
其中:
-
ϕ
(
⋅
)
\phi(\cdot)
ϕ(⋅) 是
从原始特征空间到高维特征空间的映射函数;
-
k
(
x
i
,
x
j
)
k(\mathbf{x}_i, \mathbf{x}_j)
k(xi,xj) 是核函数,用于计算
x
i
\mathbf{x}_i
xi 和
x
j
\mathbf{x}_j
xj 在高维特征空间中的
相似度;
-
Z
\mathbf{Z}
Z 是
N
×
N
N \times N
N×N 的
稀疏表示矩阵;
-
λ
\lambda
λ 是正则化参数,用于
控制稀疏性。
优化问题简化
由于直接在高维特征空间中操作可能计算成本高昂,KSSC 实际上是通过核矩阵
K
K
K 来解决问题的,其中
K
i
j
=
k
(
x
i
,
x
j
)
K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)
Kij=k(xi,xj)。这样,原始的优化问题可以简化为:
min Z 1 2 ∑ i = 1 N ∥ x i − ∑ j = 1 N k ( x i , x j ) z i j x j ∥ 2 + λ ∑ i = 1 N ∑ j = 1 N ∣ z i j ∣ \min_{\mathbf{Z}} \frac{1}{2} \sum_{i=1}^N \left\| \mathbf{x}_i - \sum_{j=1}^N k(\mathbf{x}_i, \mathbf{x}_j) z_{ij} \mathbf{x}_j \right\|^2 + \lambda \sum_{i=1}^N \sum_{j=1}^N |z_{ij}| Zmin21i=1∑N xi−j=1∑Nk(xi,xj)zijxj 2+λi=1∑Nj=1∑N∣zij∣
但是,由于
k
(
x
i
,
x
j
)
k(\mathbf{x}_i, \mathbf{x}_j)
k(xi,xj) 已经是高维特征空间中的内积
,我们进一步可以简化为:
min Z 1 2 ∑ i = 1 N ∥ x i − X ( K Z ) i ∥ 2 + λ ∑ i = 1 N ∑ j = 1 N ∣ z i j ∣ \min_{\mathbf{Z}} \frac{1}{2} \sum_{i=1}^N \left\| \mathbf{x}_i - \mathbf{X} (\mathbf{KZ})_i \right\|^2 + \lambda \sum_{i=1}^N \sum_{j=1}^N |z_{ij}| Zmin21i=1∑N∥xi−X(KZ)i∥2+λi=1∑Nj=1∑N∣zij∣
这里, ( K Z ) i (\mathbf{KZ})_i (KZ)i 表示矩阵 K Z \mathbf{KZ} KZ 的第 i i i 行。
目标公式
KSSC 的目标公式可以总结为:
min Z 1 2 ∥ X − X K Z ∥ F 2 + λ ∥ Z ∥ 1 \min_{\mathbf{Z}} \frac{1}{2} \|\mathbf{X} - \mathbf{XKZ}\|_F^2 + \lambda \|\mathbf{Z}\|_1 Zmin21∥X−XKZ∥F2+λ∥Z∥1
其中:
- ∥ ⋅ ∥ F \|\cdot\|_F ∥⋅∥F 是 Frobenius 范数,度量矩阵元素的平方和的平方根;
- ∥ ⋅ ∥ 1 \|\cdot\|_1 ∥⋅∥1 是 L1 范数,度量矩阵元素的绝对值和,用于促进稀疏性。
后处理与聚类
一旦找到稀疏表示矩阵
Z
\mathbf{Z}
Z,就可以构建相似度矩阵
W
\mathbf{W}
W 并使用谱聚类技术对数据点进行聚类。相似度矩阵可以是
Z
\mathbf{Z}
Z 的绝对值矩阵,或者更常见的是,使用
∣
Z
∣
+
∣
Z
⊤
∣
|\mathbf{Z}| + |\mathbf{Z}^\top|
∣Z∣+∣Z⊤∣ 来构建。
结论
核稀疏子空间聚类(KSSC)是一种先进的子空间聚类方法,它通过核技巧在高维特征空间中寻找数据点的稀疏表示,从而解决了非线性可分数据的聚类问题。
KSSC 的核心在于利用核函数将数据点映射到高维空间,然后在这个空间中寻找数据点之间的稀疏表示,最终通过谱聚类实现数据点的有效聚类。