当一个无向图有 c 个连通分量时,拉普拉斯矩阵 L 将恰好有 c 个 0 特征值

当一个无向图有 c c c 个连通分量时,拉普拉斯矩阵 L \mathbf{L} L 将恰好有 c c c 个 0 特征值。
这是因为每个连通分量都可以独立地看作是一个较小的完全连通子图,在这个子图中我们可以找到一个特征向量,使得该向量在子图内所有节点上取相同的非零值,在其他连通分量中的节点上取 0 值。这样的特征向量对应于特征值 0。

具体来说,如果图 G G G c c c 个连通分量组成,那么对于每一个连通分量 C i C_i Ci,我们都可以构造一个特征向量 v i \mathbf{v}_i vi,其中:

  • 如果节点属于 C i C_i Ci,则 v i \mathbf{v}_i vi 在这些节点上的值是相同的(通常取 1)。
  • 如果节点不属于 C i C_i Ci,则 v i \mathbf{v}_i vi 在这些节点上的值为 0。

这样的特征向量 v i \mathbf{v}_i vi 满足 L v i = 0 \mathbf{L}\mathbf{v}_i = 0 Lvi=0,即 v i \mathbf{v}_i vi L \mathbf{L} L 的一个特征向量,对应的特征值为 0。

具体例子

考虑一个简单的图,它由两个不相连的三角形组成,因此有两个连通分量。假设这两个三角形的顶点分别标记为 A , B , C A, B, C A,B,C D , E , F D, E, F D,E,F。图可以表示为:

  • 三角形 1: A − B , B − C , C − A A - B, B - C, C - A AB,BC,CA
  • 三角形 2: D − E , E − F , F − D D - E, E - F, F - D DE,EF,FD

邻接矩阵 S S S 可以写成如下形式(忽略自环):

S = ( 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 ) S = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} S= 011000101000110000000011000101000110

计算度矩阵 D D D

D = diag ( 2 , 2 , 2 , 2 , 2 , 2 ) D = \text{diag}(2, 2, 2, 2, 2, 2) D=diag(2,2,2,2,2,2)

然后计算拉普拉斯矩阵 L = D − S L = D - S L=DS

L = ( 2 − 1 − 1 0 0 0 − 1 2 − 1 0 0 0 − 1 − 1 2 0 0 0 0 0 0 2 − 1 − 1 0 0 0 − 1 2 − 1 0 0 0 − 1 − 1 2 ) L = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix} L= 211000121000112000000211000121000112

对于这个 L L L,我们可以找到两个线性无关的特征向量,它们分别对应于两个连通分量,并且都对应特征值 0:

  • 第一个特征向量 v 1 = ( 1 , 1 , 1 , 0 , 0 , 0 ) \mathbf{v}_1 = (1, 1, 1, 0, 0, 0) v1=(1,1,1,0,0,0) 对应于第一个三角形。
  • 第二个特征向量 v 2 = ( 0 , 0 , 0 , 1 , 1 , 1 ) \mathbf{v}_2 = (0, 0, 0, 1, 1, 1) v2=(0,0,0,1,1,1) 对应于第二个三角形。

这两个特征向量表明 L L L两个 0 特征值,这与图中有两个连通分量的事实相符。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值